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ABSTRACT

We study the secrecy capacity of the frequency-selective

wiretap channel. Assuming that a guard interval of L sym-

bols is inserted to avoid the inter-block interference and

these symbols are discarded at the receiver, the single-carrier

frequency-selective channel is modeled as a multiple-input

multiple-output Toeplitz matrix. For this special case of the

MIMO wiretap channel and under the assumption of per-

fect channel knowledge at transmitter (CSIT), we propose

a practical Vandermonde precoding scheme that transmits

the confidential messages on the zeros of the eavesdrop-

per channel. It is proved that this Vandermonde precoding

achieves the full multiplexing gain offered by the frequency-

selective wiretap channel in the high SNR regime. For a

more realistic case where the transmitter only knows the le-

gitime channel we consider the “mask beamforming” scheme

where the artificial noise is sent on the zeros of the legitime

channel via the Vandermonde precoding. This mask beam-

forming is shown to achieve the same multiplexing gain as

the perfect CSIT.

1. INTRODUCTION

We consider the frequency-selective wiretap channel where

the legitime transmitter sends confidential messages to the

intended receiver in the presence of the eavesdropper. Al-

though recent works have characterized the secrecy capac-

ity of the wiretap fading channel for the scalar case [1], the

Multiple-Input Single-Output (MISO) case [2], and Multi-

ple Input Multiple Output (MIMO) case [3], these works

only apply to the frequency flat fading channel. To the

best of the authors’ knowledge, none has explicitly consid-

ered the case of the frequency selective channel relevant to

current standards (such as IEEE802.11a type). In order to

model the frequency selective channel with L paths, we as-

sume that a guard interval of L symbols is inserted at the

beginning of each block of N symbols in order to avoid

the inter-block interference. By further assuming that each

receiver observes N symbols out of N + L by discard-

ing L symbols, the block frequency selective channel can

be modeled as a N + L multiple-input N multiple-output

Toeplitz matrix1. On one hand, it is known that the parallel

wiretap fading channels achieve the secrecy capacity which

does not scale with the SNR [1]. On other hand, Khisti et

al. showed that the capacity of the MIMO wiretap chan-

nel grows linearly, i.e. r log SNR where r denotes the ef-

fective degree of freedom (to be specified) [3]. It clearly

appears that performing OFDM transmission to convert the

frequency-selective channel into a set of N parallel flat fad-

ing channels is highly suboptimal in terms of multiplexing

gain. Moreover to achieve the secrecy capacity of MISO

and MIMO wiretap channel in the high SNR regime, the op-

timal strategy consists of beamforming in the null space of

the eavesdropper’s channel [2, 3]. Inspired by this strategy,

in the case of perfect CSIT, we propose a practical Vander-

monde precoding scheme that nulls the eavesdropper chan-

nel in single-carrier frequency selective channels. Since the

channel of the legitimate and eavesdropper are statistically

independent, this scheme provide L (where L is the num-

ber of paths) degrees of freedom to transmit secret informa-

tion. Note that Vandermonde matrices have already been

considered for cognitive radios [4] and CDMA systems [5]

to reduce/null interference. One of the appealing aspects

of Vandermonde precoding is that it does not require a spe-

cific secrecy encoding technique but can be applied to any

classical encoding schemes. In a more practical case where

the transmitter does not know the eavesdropper’ channel,

we consider the mask beamforming scheme with Vander-

monde precoding. The idea here is to send artificial noise

on the zeros of the legitimate channel in such a way that L

degrees of freedom of the eavesdropper are jammed. Inter-

estingly, in the high SNR regime, L degrees of freedom for

the secrecy capacity can be achieved as for the perfect CSIT

case.

In the following, section 2 presents the frequency selec-

tive wire-tap channel model. Section 3 introduces the Van-

dermonde precoding both for the perfect and partial CSIT

1The last assumption implies in practice that both the intended receiver
and the eavesdropper have the same receiver structure, i.e. the eavesdrop-
per is not allowed/capable to modify its receiver.
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Fig. 1. Wiretap model

cases. The behavior in the high SNR regime is also dis-

cussed. Finally, section 4 compares the performance for the

various cases.

2. MODEL

2.1. Channel Model

We consider the block frequency-selective fading channel

given by

yt = T (h)xt + nt (1)

zt = T (g)xt + νt, t = 1, . . . , T

where T (h), T (g) denotes a N × (N + L) Toeplitz ma-
trix with L + 1 i.i.d. Gaussian distributed paths h,g ∼
NC(0, IL+1) corresponding to the legitime, eavesdropper
channel
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xt ∈ C
N+L

denotes the transmit vector at channel use t,

and finally nt,νt ∼ NC(0, IN ) are independent AWGN.

The input matrix is subject to the power constraint given by

1

T

T
∑

t=1

xH
t xt ≤ (N + L)P (2)

We assume that the channels remain constant over a block

length of T channel uses for an arbitrary large T . At each

channel use t, we transmit N + L symbols by appending a

guard interval of size L larger than the coherence time. This

enables to avoid the interference between neighbor channel

uses. We assume first that the channels h,g are known by

all terminals. Then we consider the case where the trans-

mitter knows only the legitime channel h while the intended

receiver and the eavesdropper know both channels.

2.2. Secrecy capacity

The wiretap channel was first introduced by Wyner [6] in

the scalar case of degraded channels. The secrecy rate is

said to be achievable if there exists a sequence of (T, 2TR)
codes for w uniformly distributed in [1, 2, . . . , 2TR] such

that the error probability at the intended receiver vanishes

and the equivocation rate 1
T H(w|z) approaches 1

T H(w).
Moreover, the secrecy capacity, the supremum of the se-

crecy rates, of the block frequency selective channel (1) in

bps per dimension is given by [7]

C =
1

N + L
max

pu,px|u

I(u;y) − I(u; z) (3)

for some auxiliary random variable u satisfying the Markov

chain u → x → (y, z).

2.3. Equivalent MIMO block fading

The frequency-selective wiretap channel (1) is a special case

of the MIMO flat-fading wiretap channel with N +L trans-

mit antennas, N receive antennas at the eavesdropper, N an-

tenna at the legitime receiver. It has been proved in [8][9][10]

that the MIMO secrecy capacity channel per transmit an-

tenna is given by

max
S:tr(S)≤(N+L)P

1

N + L
(log |I+HSHH |−log |I+GSGH |)

(4)

where xt ∼ NC(0,S). Interestingly, the structure of

the optimal solution is such as no information is transmit-

ted along any direction where the eavesdropper observes a

stronger signal than the intended receiver. In the high SNR

regime (where all channels become comparable), the opti-

mal solution imposes to send specifically on the null sub-

space of the eavesdropper channel [3]. The secrecy degree

of freedom (pre-log of (4)) is given by the rank of HG⊥

where G⊥ denotes the projection matrix onto the null space

of G. Unlike previous works, we focus in the next sections

on the specific structure (Toeplitz) of the MIMO channel

and provide a practical precoding that achieves in the high

SNR regime the degrees of freedom of the MIMO secrecy

capacity.

3. VANDERMONDE PRECODING

3.1. Perfect CSIT

First we consider the case where the transmitter knows per-

fectly both the legitime and eavesdropper channels. In or-

der to achieve the linear scaling of the secrecy capacity, we

design the precoder such that the transmitter sends in the or-

thogonal space of the eavesdropper’s channel by satisfying

T (g)xt = 0N , ∀t (5)

This condition is always satisfied by forming xt such that

xt = Vgut (6)



where ut ∈ C
L

is the symbol vector with covariance Φ, Vg

is a (N + L) × L Vandermonde matrix given by
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(7)

where {al, . . . , aL} are the roots of the polynomial S(z) =
∑L

i=0 giz
L−i with L + 1 coefficients of the eavesdropper’s

channel g. For later use we let vg,i denote the i-th col-

umn of Vg . It follows immediately that the Vandermonde

precoding is one deterministic way of mapping the random

symbol vector u to the transmit vector x in (3). The power

constraint is replaced by

tr(VgΦVH
g ) ≤ P (8)

The orthogonality between the Vandermonde matrix and the

eavesdropper’s channel yields

I(u; z) = log |I + T (g)VgΦVH
g T (g)H | = 0 (9)

as if the eavesdropper channel did not exist. The secrecy

capacity of the frequency selective channel (1) with Van-

dermonde precoding reduces to

Cv =
1

N + L
max

tr(VgΦVH
g )≤(N+L)P

log |I + HΦHH | (10)

where we defined H = T (h)Vg ∈ C
N×L

. Although the

above secrecy capacity concave in Φ can be optimized ex-

plicitly, here we restrict ourselves to a diagonal input co-

variance. This is sufficient to achieve the multiplexing gain

offered by the channel, as we will see below. In particu-

lar, we consider the power allocation Φ = diag(p1, . . . , pL)
that equalizes

piαi =
(N + L)P

L
, i = 1, . . . , L (11)

where we let αi = ||vg,i||
2.

Lemma 1 The secrecy capacity of Vandermonde pre-

coding with the equalized power allocation (11) achieves

the multiplexing gain of L
N+L .

Sketch of the proof The achievable secrecy capacity
with Vandermonde precoding with the power allocation (11)
is given by

Cv(P )
(a)
=

1
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˛

˛
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˛
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=
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˛

˛

˛

˛

IL +
(N + L)P

L
T (h)ṼgṼ
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(c)
=

L

N + L
log P + O(1)

where in (a) we define D = diag
(

1
α1

, . . . , 1
αL

)

, (b) fol-

lows by letting Ṽg = VgD
1/2, a scaled Vandermonde ma-

trix whose columns are all unit-norm, (c) follows from

rank(T (h)T (h)HVH
g Vg) = rank(VH

g Vg) = L

by noticing that T (h)T (h)H is invertible (since all the columns

of the Vandermonde matrix are linearly independent2). The

last expression shows that the secrecy capacity with the Van-

dermonde precoding achieves L
N+L degrees of freedom. ¤

In order to enhance the performance, we can replace the

equalized power allocation (11) by the following waterfill-

ing power allocation. Apply singular value decomposition

so that

H = UhΛhP
H
h

where Uh ∈ C
N×N

,Ph ∈ C
L×L

are unitary matrices and

Λh ∈ C
N×L

contains r singular values {λ
1/2
hi }. Then, the

i-th diagonal element is given by

pi =

[

µ

αi
−

1

λhi

]

+

(12)

where µ is determined so as to satisfy the total power con-

straint
∑r

i=1 αipi = (N + L)P . It is not difficult to see

that if α1

λh1

= · · · = αL

λhL
the waterfilling power allocation

coincides with the equalized allocation (11).

3.2. Partial CSIT

We now consider a more realistic scenario where the trans-

mitter only knows the legitimate channel h. We apply the

mask beamforming scheme originally proposed by [11] and

analyzed in [3]. Let us form the transmit vector x ∈ C
N+L

such as

x = [Ṽh|Q]

[

η

u

]

(13)

where Vh ∈ C
(N+L)×L

is the normalized Vandermonde

matrix that nulls the roots of h with unit-norm columns,

Q ∈ C
(N+L)×N

is unitary matrix obtained by the compact

singular value decomposition of T (h) = U′ΛQH such that

QHQ = I, η ∼ NC(0, P IL) is noise, u ∼ NC(0, P IN ) is

the symbol vector. Notice that the precoding matrix Ṽh for

the artificial noise can be replaced by any matrix that is or-

thogonal to T (h), for example by a unitary matrix orthogo-

nal to Q as considered in [3]. The received signals are given

by

y = T (h)Qu + n (14)

z = T (g)Qu + T (g)Ṽhη + ν (15)

2rank(AB) = rank(B) if A is invertible



The secrecy capacity achieved by the mask beamforming is
given by

Cmb(P ) =
1

N + L

“

log |IN + PT (h)T (h)H | − C
residual
mb (P )

”

(16)

where Cresidual
mb (P ) is given by

C
residual
mb (P ) = log

|Σ(P ) + PT (g)QQHT (g)H |

|Σ(P )|

= log |IN + PΣ
−1(P )T (g)QQ

HT (g)H |

and we define the covariance of the overall noise seen by

the eavesdropper

Σ(P ) = IN + PT (g)ṼhṼ
H
h T (g)H .

Lemma 2 The secrecy capacity of the mask beamform-

ing achieves the multiplexing gain L
N+L .

Sketch of the proof We show that the first term in (16)

scales as N log(P ) in the high SNR regime. This can be

easily seen by noticing that T (h) has a rank N , i.e.

log |IN + PT (h)T (h)H | =

N
∑

i=1

log(1 + Pλh
i ) (17)

where λh
i are the N non-zero eigenvalues of T (h)T (h)H .

Next, we consider the scaling of Cresidual
mb (P ) as P → ∞.

Let T (g)ṼhṼ
H
h T (g)H = UΛvUH where Λv contains L

eigen values of {λv
l }. In this case,

C
residual
mb (P ) = log |I + PΣ(P )−1T (g)QQ

HT (g)H |

= log |I + D
v(P )T (g)QQ

HT (g)H | (18)

with Dv(P ) = diag([P, ...P, P
1+Pλv

1

, ..., P
1+Pλv

L

]). In the

high SNR regime, the term (18) scales as (N − L) log(P )
whereas (17) scales as N log(P ). The secrecy capacity of

the make beamforming scales therefore as L
N+L log(P ), the

same as the perfect CSI case. ¤

4. NUMERICAL EXAMPLES

In this section, we evaluate the secrecy capacity of the pro-

posed Vandermonde precoding as well as the mask beam-

forming.

For the sake of comparison, we first consider the spe-

cial case of the MISO wiretap channel where the intended

receiver receives a scalar observation while the eavesdrop-

per has N observations. We average the capacity over a

large number of randomly generated channels with N = 64
and L = 16. In Fig. 2, we compare the secrecy capacity

with the Vandermonde precoding, the mask beamforming,

and the optimal beamforming strategy [8] as a function of

P . We observe that all strategies achieve the same multi-

plexing gain of 1
N+L . In fact, the MISO secrecy capacity is

given by

1

N + L
log

(

1 + (N + L)P max
φ:T (g)φ=0

|hH
1 φ|2

)

(19)

where hH
1 denotes the first row of T (h), while the Vander-

monde precoding achieves

1

N + L
log(1 + (N + L)P max

l
|hH

1 vg,l|
2). (20)

Clearly, there exists a constant gap between (19) and (20)
due to the suboptimal choice of beamforming vector. With
the mask beamforming that sends one symbol and N+L−1
artificial noise under the MISO setting, it is not difficult to
see that (N + L)Cmb(P ) in the high SNR regime reduces
to
„

log(1 + ||h1||
2
P ) − log

˛

˛

˛

˛

I +
1

||h1||2
Λ

−1T (g)h1h
H
1 T (g)H

˛

˛

˛

˛

«

where Λ is a diagonal matrix related to the N eigenvalues

of T (g)Q′Q′HT (g) where Q′ is the unitary matrix orthog-

onal to h1.

Next, we consider the MIMO wiretap channel where the

transmitter sends N + L signals and both the intended re-

ceiver and the eavesdropper receive N observations. We

compare the secrecy capacity of Vandermonde precoding

(10) and that of the mask beamforming (16). For the Van-

dermonde precoding we consider both the equalized power

(11) and the waterfilling power (12). Figs. 3, 4 show the se-

crecy capacity in bps/dimension achieved by these schemes

for N = L = 64, N = 64, L = 16 respectively. The latter

parameter is inspired by the 802.11a where we aim at send-

ing the confidential messages over a cyclic prefix. It can

be remarked that both the Vandermonde precoding and the

mask beamforming achieve the same slope in the high SNR

regime. The mask beamforming performs closed to the Van-

dermonde precoding with equal power allocation especially

for N = L. We observe also a non-negligible gain due to

the watefilling power allocation for the Vandermonde pre-

coding. The relative merit between these schemes is out of

scope of this paper and remains as a future investigation.

These numerical examples show that the Vandermonde

precoding as well as the mask beamforming are able to ex-

ploit the full degrees of freedom offered by the frequency-

selective wiretap channel. The Vandermonde precoding with

waterfilling power allocation yields a substantial gain with

respect to the mask beamforming at the price of perfect

channel knowledge at the transmitter.
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