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Abstract—We present a Bayesian game-theoretic approach
for the distributed resource allocation problem in the context
of K-user fading multiple access channels (MAC). We assume
that users have incomplete information about the channel state
information (CSI), i.e., each user knows his own channel state, but
does not know the states of other users. All users (transmitters)
are considered to be rational, selfish, and each one carries the
objective of maximizing its own achievable data rate. In such a
game-theoretic study, the central question is whether a Bayesian
equilibrium (BE) exists. Based on the assumption of two channel
states, we prove that there exists exactly one BE in this game.

I. I NTRODUCTION

In recent years, there has been great interest in self-
organizing wireless networks in which mobile devices allo-
cate resource in a decentralized manner [1]. Tools of game
theory [2] have been widely applied to study the resource
allocation and power control problems in various types of net-
works, such as fading MAC [3], orthogonal frequency division
multiplexing (OFDM) [4], multiple input and multiple output
(MIMO) channels [5], [6], and interference channels [7], etc.
Typically, the game-theoretic models used in these previous
works assume that the information/knowledge about other
devices is available to all devices. However, this assumption
is hardly met in practice. In practical wireless communication
scenarios, mobile devices can have local information but can
barely access to global information on the network status.

In this paper, we focus our attentions on the fading MAC.
The capacity region of fading MAC and the optimal resource
allocation algorithms have been characterized and well stud-
ied in many pioneering works with assumptions of different
information levels [8]-[11]. However, in order to achieve the
full capacity region, it usually requires a central computing
resource (a scheduler with comprehensive knowledge of the
network information) to globally allocate the system resources.
This process is centralized, it involves feedback and overhead
communication whose load scales linearly with the number of
transmitters and receivers in the network. In addition, with the
fast evolution of wireless techniques, this centralized network
infrastructure begins to expose its weakness in many aspects,
e.g., slow reconfiguration against varying environment, in-
creased computational complexity, etc.

A static non-cooperative game has been introduced in the
context of fading MAC, known as “waterfilling game” [3].

From a simple two-user MAC setting, the authors show that
the unique Nash equilibrium (NE) [12] of the corresponding
waterfilling game is actually the maximum sum-rate point on
the boundary of the MAC capacity region. However, their
results rely on the fact that both transmitters have “complete
information” about the CSI, and in particular, perfect CSI of
all transmitters in the network. As we previously pointed out,
this assumption is rarely possible in practice.

Thus, this power allocation game needs to be reconstructed
with some realistic assumptions made on the knowledge level
of mobile devices. Under this consideration, it is of great
interest to investigate scenarios in which devices have “in-
complete information” about their components, e.g., a device
is ware of its own channel gain, but unaware of the channel
gains of other devices. In game theory, a strategic game with
incomplete information is called a “Bayesian game”. Over
the last ten years, Bayesian game-theoretic tools have been
used to design distributed resource allocation strategiesonly
in a few contexts, e.g., CDMA networks [13], [14], multi-
carrier interference networks [15]. Our motivation is therefore
to study how Bayesian games can be applied to the context
of fading MAC. The goal of this paper is to investigate the
outcome of our Bayesian waterfilling game, i.e., the existence
and uniqueness of BE point(s).

The paper is organized in the following form: In Section II,
we introduce the system model and describe briefly the back-
ground. In Section III, theK-user MAC is formulated as a
Bayesian game. In Section IV, we characterize the BE set.
Finally, we close with some concluding remarks in Section V.

II. SYSTEM MODEL AND BACKGROUND

A. System Model

We consider a time-slotted flat-fading MAC in a single-
cell network, in whichK users are simultaneously sending
information to one base station. At timet, the signal received
by the base station can be mathematically expressed as

y (t) =

K
∑

k=1

√

gk (t)xk (t) + z (t)

wherexk (t) andgk (t) are the input signal and fading channel
gain of userk, z (t) is a zero-mean white Gaussian noise with



varianceσ2. The input signalxk (t) can be further written as

xk (t) =
√

pk (t)sk (t)

wherepk (t) andsk (t) are the transmitted power and data of
userk at time t.

We assume that the channel gainsg1, . . . , gK are determin-
istic constants during the period of each transmission block
(which is assumed to be larger than a time slot interval).
Therefore, within each time slott, this is simply a Gaussian
multi-user channel [16]. Now, instead of considering the whole
capacity region, we are interested in the single-user achievable
rate (assuming that the base station uses low complexity
single-user decoder [16]), i.e.,

Rk = log

(

1 +
gkpk

σ2 +
∑K

j=1,j 6=k gjpj

)

(1)

Intuitively, the object of each user is to maximize this rate,
which represents the amount of transmitted information.

B. Complete and Incomplete Information

Before introducing the problem, it is necessary to clarify
the meanings of complete information and incomplete infor-
mation. In game theory, the notion of complete information
means that all players know completely the structure of the
game, which includes:

• Player set (how many devices involved? what are they?)
• Other players’ actions (what are their behaviors?)
• Other players’ payoffs (what are their object functions?)

If some players do not completely know the game structure,
we call it a game with incomplete information. For example,
“chess” is a game with complete information, because the
chess moves are known to all players; “poker” is a game with
incomplete information, because players are uncertain about
the card states of other players, therefore, the exact object
functions of other players are unknown.

In our context, take an example of two-user MAC, complete
information means that the channel gainsg1, g2 are available
at both transmitters Tx1, Tx2; incomplete information means
that the channel gaingk is only available at Txk, k = 1, 2. In
this paper, we assume that the player set and action set (see
their definitions in Section III) are known to all players.

C. Background: Waterfilling Game

An important related work is the “waterfilling game” [3],
where multi-user resource allocation problem in fading MAC
is studied in detail as a non-cooperative game with complete
information. In this game, users are assumed to compete with
transmission rates as payoff and transmit powers as moves.

Here, we briefly describe the problem, which is also helpful
to understand our Bayesian game formulation. Under the
assumption of complete information, each userk’s transmit
power strategy can be considered as a function of all users’
channel gains, i.e.,pk (g1, . . . , gK). In the case of two-user
MAC, for a fixed strategyp2 (g1, g2), finding the optimal

strategyp1 (g1, g2) for user1 requires solving the following
optimization problem:

max
pk

Eg1,g2

[

log

(

1 +
g1p1(g1, g2)

σ2 + g2p2(g1, g2)

)]

s.t. Eg1,g2
[p1 (g1, g2)] ≤ Pmax

1 (2)

p1 (g1, g2) ≥ 0

and similarly for user 2. Here,Pmax
1 is the average power

constraint of user1. Note that the solution of (2) depends
on user 2’s strategyp2 (·), which user1 does not know, and
reciprocally for user 2. However, the static non-cooperative
game model given in [3] enables both users to adjust their
strategies adaptively to their guesses of the strategy of the
other user. This process converges to a unique NE:






p⋆
1(g1, g2) =

(

λ1 −
σ2

g1

)+

, wheng1 ≥ λ2

λ1

g2

p⋆
2(g1, g2) =

(

λ2 −
σ2

g2

)+

, wheng2 ≥ λ1

λ2

g1

(3)

with p⋆
1(g1, g2) = 0 andp⋆

2(g1, g2) = 0 in all other cases. The
dual variablesλ1 andλ2 are given by















Eg1,g2

[

(

λ1 −
σ2

g1

)+
∣

∣

∣

∣

g1 ≥ λ2

λ1

g2

]

= Pmax
1

Eg1,g2

[

(

λ2 −
σ2

g2

)+
∣

∣

∣

∣

g2 ≥ λ1

λ2

g1

]

= Pmax
2

(4)

The authors show that the NE (3) corresponds to the maximum
sum-rate point of the capacity region. This result is somewhat
surprising, since NE is in general inefficient comparing to the
Pareto optimality. Thus, an interesting conclusion is thatthe
selfish behavior of the users leads them to jointly optimize the
sum-rate of the channel.

III. B AYESIAN GAME MODEL

Before introducing our game model, we need to clarify a
prior assumption, as follows,

Assumption III.1. We assume that each user’s channel gain
gk is i.i.d. from two discrete values:g− andg+ with probability
ρ− and ρ+, respectively. WloG, we assumeg− < g+.

On the one hand, our assumption is closely related to the
way how feedback information are signalled to the trans-
mitters. In order to get the channel informationgk at the
transmitter side, it requires the base station to estimate it
and then feedback to userk at a given precision. Since in
digital communications any information is represented by a
finite number of bits (e.g.,x bits), channels gains are mapped
into a set that contains a finite number of states (2x states).

On the other hand, this is a necessary assumption for analyt-
ical tractability, since in principle the functional strategic form
of a player can be quite complex with both actions and states
are continuous (or infinite). To avoid this problem, in [15]
the authors successfully modelled a multi-carrier Gaussian
interference channel as a Bayesian game with discrete (or
finite) actions and continuous states. Inspired from [15], in this
paper, we model the fading MAC as a Bayesian game under
the assumption of continuous actions and discrete states.



Now, we model theK-user fading MAC as a Bayesian
game. In such a communication system in which users have
incomplete information, the natural object of each user is to
maximize itsaverageachievable rate, i.e.,

max
pk

Eg

[

log

(

1 +
gkpk(gk)

σ2 +
∑K

j=1,j 6=k gjpj(gj)

)]

s.t. Egk
[pk (gk)] ≤ Pmax

k (5)

pk (gk) ≥ 0

whereg = {g1, . . . , gK} is a set of channel gains,Pmax
k is

the average power constraint for userk. Note that under the
assumption that each user has only incomplete information
about the fading channel gains, userk’s power strategypk (·)
can only rely on its own channel gaingk, written aspk (gk).

For a given strategyp−k = {p1, . . . , pk−1, pk+1, . . . , pK},
the single-user maximization problem (5) is a convex opti-
mization problem [17]. Via Lagrangian duality, the solution is
given by the following equation:

Eg
−k

[

gk

σ2 + gkpk(gk) +
∑

j 6=k gjpj(gj)

]

= λk (6)

where g−k = {g1, . . . , gk−1, gk+1, . . . , gK}, and the dual
variable λk is chosen such that the power constraint in (5)
is satisfied with equality. However, the solution of (6) also
depends onp−k (·) which userk does not know. Thus, in order
to obtain the optimal power allocation, each user must adjusts
its power level based on the guess of all other users’ strategies.
Given the following game model, each user is able to adjust
its strategy according to the belief it has on the strategy ofthe
other user.

The K-player MAC Bayesian waterfilling game can be
completely characterized as:

GMAC , 〈K, T ,P,Q,U〉

• Player set:K = {1, . . . ,K}.
• Type set:T = T1×. . .×TK (’×’ is the Cartesian product)

whereTk = {g−, g+}, a player’s type is defined as its
channel gain, i.e.,gk ∈ Tk.

• Action set:P = P1 × . . . × PK

wherePk = [0, Pmax
k ], a player’s action is defined as its

transmit power, i.e.,pk ∈ Pk.
• Probability set:Q = Q1 × . . . ×QK

whereQk = {ρ−, ρ+}, we haveρ+ = Pr (gk = g+) and
ρ− = Pr (gk = g−).

• Payoff set:U = {u1, . . . , uK}
whereuk is chosen as playerk’s achievable rate (1)

uk(p1, . . . , pK)=log

(

1+
gkpk(gk)

σ2 +
∑K

j=1,j 6=k gjpj(gj)

)

(7)

In games of incomplete information, a player’s type rep-
resents any kind of private information that is relevant to its
decision making. In our context, the fading channel gaingk is
naturally considered as the type of userk’s, since its decision
(in terms of transmit power) can only rely ongk.

IV. BAYESIAN EQUILIBRIUM

What we can expect of the outcome from a Bayesian
game? Generally speaking, the process of rational players’
behaviors usually results in BE, which represents a “stable”
result of learning and evolution of all participants. Therefore,
it is important to characterize its set, since it concerns the
performance analysis of a distributed system.

A. Definition of Bayesian Equilibrium

Let {p̂k(·), p−k(·)} denote the strategy profile where all
players playp (·) except playerk who plays p̂k (·), we can
then describe playerk’s payoff as:

uk (p̂k, p−k) = uk (p1, . . . , pk−1, p̂k, pk+1, . . . , pK)

Definition IV.1. (Bayesian equilibrium)
The strategy profilep⋆ (·) = {p⋆

k (·)}
k∈K

is a (pure strategy)
Bayesian equilibrium, if for allk ∈ K, and for all pk (·) ∈ Pk

and p−k (·) ∈ P−k

ūk

(

p⋆
k, p⋆

−k

)

≥ ūk

(

pk, p⋆
−k

)

where we definēuk , Eg [uk].

From this definition, it is clear that at the BE no player can
benefit by changing its strategy while the other players keep
theirs unchanged. It is worth to mention that the action set
of each player is independent of the type set, i.e., the actions
available to userk is the same for every its type.

B. Characterization of Bayesian Equilibrium Set

It is well known that, in general, an equilibrium point does
not necessarily exist [2]. Therefore, our primary interestis
to investigate theexistenceand uniquenessof BE in GMAC .
Here, we directly give our main result:

Theorem IV.2. There exists a unique Bayesian equilibrium in
the K-user MAC gameGMAC .

Proof: It is easy to prove the existence part, since the
strategy spacepk is convex, compact and nonempty for each
k; the payoff functionuk is continuous in bothpk and p−k;
anduk is concave inpk for any p−k [2].

In order to prove the uniqueness part, we should rely on a
sufficient condition [18]: a non-cooperative game has a unique
equilibrium, if the non-negative weighted sum of the payoffs
is diagonally strictly concave. We firstly give the definition:

Definition IV.3. (Diagonally strictly concave)
Function f(x, r) =

∑n
i=1

riϕi(x) is called diagonally
strictly concave for any vectorx ∈ R

n×1 and fixed vector
r ∈ R

n×1
++ , if for any two different vectorsx0,x1, we have

Ω(x0,x1, r),(x1−x0)Tδ(x0, r)+(x0−x1)Tδ(x1, r)>0 (8)

whereδ(x, r) is called pseudo-gradient off(x, r), defined as

δ(x, r) ,







r1
∂ϕ1

∂x1

...
rn

∂ϕn

∂xn






. (9)



Lemma IV.4. The weighted non-negative sum of the average
payoffsūk in GMAC is diagonally strictly concave.

Proof: Write the sum of the average payoffs as:

fu(p, r) ,

K
∑

k=1

rkūk(p), (10)

where p = [p1 . . . pK ]T is the transmit power vector,
r = [r1 . . . rK ]

T is a non-negative vector assigning weights
r1, . . . , rK to the average payoffs̄u1, . . . , ūK , respectively.
Similar to (9), we letδu(p, r) , [r1

∂ū1

∂p1

. . . rK
∂ūK

∂pK

]T be the
pseudo-gradient offu(p, r). Now, we define

pk , pk (g−) , k ∈ K

the transmit power of playerk when its channel gain is
g−. Since we have shown from Lagrangian that at the equi-
librium the power constraint is satisfied with equality, i.e.,
∑

gk
pk (gk) = Pmax

k , we havePmax
k − pk = pk (g+) k ∈ K,

as the transmit power when its channel gain isg+. Therefore,
it is easy to find that the average payoffūk can be actually
transformed into a weighted sum-log function, as follows

ūk(pk) =
∑

i

ωi log

[

1 +
αi

k + βi
kpk

σ2 +
∑

j 6=k

(

αi
j + βi

jpj

)

]

where i represents the index for different jointly probability
events,ωi represents the corresponding probability for index
i. Note that the following conditions hold for alli, k

αi
k + βi

kpk ≥ 0, αi
k > 0, βi

k 6= 0, σ2 > 0

Now, we can write the pseudo-gradientδu as

δu(p, r) =







r1
∂u1

∂p1

...
rK

∂uK

∂pK






=







r1

∑

i βi
1φ

−1

i (p)
...

rK

∑

i βi
Kφ−1

i (p)







where functionφi (x) is defined as

φi(x) , σ2 +

K
∑

k=1

(

αi
k + βi

kxk

)

To check the diagonally strictly concave condition (8), we let
p0,p1 be two different vectors, and define

Ωu(p0,p1, r) , (p1 − p0)Tδu(p0, r) + (p0 − p1)Tδu(p1, r)

=
∑

i

[

φ−1

i (p0) − φ−1

i (p1)
]

ζi

=
∑

i

φ−1

i (p0)φ−1

i (p1)ζ2
i

where ζi =
∑K

k=1
rkβi

k

(

p1
k − p0

k

)

. Define ∆pk = p1
k − p0

k,
sincep0,p1 are two different vectors, we must have∆p =
[∆p1 · · ·∆pK ]

T
6= 0. Now, we can draw a conclusion from

the equation above:Ωu(p0,p1, r) > 0. This is because:(1)
the first partφ−1

i (p0)φ−1

i (p1) > 0 for all i, sinceσ2 > 0
and αi

k + βi
kpk ≥ 0 for all i, k; (2) the second partζ2

i ≥
0 for all i, and there exists at least one nonzero termζ2

i ,

due to∆p 6= 0 and rk 6= 0, βi
k 6= 0 for all i, k. Therefore,

the summation of all the products of the first and the second
terms must be positive. From Definition IV.3, the sum-payoff
function fu(p, r) satisfies the condition of diagonally strictly
concave. This completes the proof of this lemma.

Since our sum-payoff functionfu(p, r) (10) is diagonally
strictly concave, from the Theorem2 in [18], we have the
uniqueness of Nash equilibrium in our gameGMAC .

V. CONCLUSION

We presented a Bayesian game-theoretic framework for
distributed resource allocation in fading MAC, where users
are assumed to have only local information about the network
channel gain states. By introducing the assumption of finite
channel states, we successfully found a analytical way to char-
acterize the BE set. We proved the existence and uniqueness
of BE in our game. This result is important for predicting the
system performance of a distributed wireless network.
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