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On the Fokker-Planck Equation
for Stochastic Hybrid Systems:
Application to a Wind Turbine Model

Julien Bect?, Yannick Phulpifif, Hana Baili*, Gilles Fleury*
* Dept. of Signal Processing and Electronic Systems
 Dept. of Power and Energy Systems
1 Supélec, 3 rue Joliot-Curie, Plateau de Moulon, 91192 Gif¥s/ette cedex, France.

Abstract— This paper presents some recent results concerning  Our aim is to provide power system practitioners with a
a class of continuous-time Markov processes called "stockic  short introduction to this modern framework, and espegiall
hybrid systems™. These processes describe the evolution ofy, 5 yseful mathematical result: the generalized FokkandX

a multidimensional hybrid-state dynamical system subjectto - L . . . .
Gaussian white noise inputs. After a brief recall of the fornalism, Equation (FPE). This is a partial differential equation )D

we state the generalized Fokker-Planck equation, which is a Satisfied by the probability density function of the statei-va
partial differential equation satisfied by the probability density ables, which provides an alternative to Monte-Carlo teghes
function of the system. As an illustration, we consider a vamble-  for the computation of various probabilistic charactérsof
speed wind turbine, with a switching controller that combines the model.

stall regulation and pitch control. For a given value of the nean Th . ized foll - in the first t
wind speed, the stationary distribution of the state variates € paper Is organized as tollows: In the nrst part, an

is Computed numerica”y. This tru|y dynamica| ana|y5i5 of he abstract definition of stochastic hybrld Systems is gived an
system yields a complete probabilistic characterization fothe the associated generalized FPE is stated. Then the theory is

uncertain power OL.JtpUt, which is much more accurate than the applied to a variable-speed wind turbine model, yielding a
usual static analysis. probabilistic characterization of the uncertain powempoitiof
the system—for a given mean wind speed. Numerical results
|. INTRODUCTION are given, that support the usefulness of the approach.

The dynamical behaviour of a power system typically Il. STOCHASTIC HYBRID PROCESSES
involves a complex combination of continuous and discrete _
dynamics [2], the discrete part usually coming from the preé' Definition
ence of a switching controller or from an idealized modeling A “stochastic hybrid process” is a Markov process), t €
of strong non-linearities. The theory of hybrid dynamicaR, thatis made up of two components: a discrete component
systems [1], [3] is therefore a natural framework for powes-s ¢(t), that takes its values in a countable ggtand aR"-valued
tems modeling and control, since it allows to simultanepustomponentx(t). When the discrete component (sometimes
capture both kinds of behaviour. Although the conventiongflled the mode) is fixed to some valgee Q, the continuous
formulation is deterministic, there have been many attempgomponent evolves in a set denoted &Yy,,, where X, is
to introduce randomness in the theory, in order to cope wi@m open subset oR™ and X';, = A}, U 04, its closure.
the inherent uncertainty in many practical problems (sge [#herefore, the processt) takes its values in a hybrid state
and the references therein for a survey). spaceZ C Q x R”, defined by

This paper focuses on one class of stochastic hybrid models, _ =
called stochastic hybrid systems [5], that we believe paty Z = Usee {q} x Xy, (1)
useful in the field of power systems. The basic idea is to Various classes of stochastic hybrid processes have been
replace the differential equations in the deterministicleldy studied in the literature, depending on the kind of jumps and
stochastic differential equations (SDEs) [6]. Roughlystis continuous dynamics that are allowed [4]. In this papersit i
tantamount to considering a deterministic hybrid systert wiassumed tha(t) satisfies the followings:

Gaussian white noise inputs. An early example of a stoahasti , there exists an increasing sequence of Markov times
hybrid system in the field of power systems can be found in (Tn)n=0, With 7o = 0 andr, < 7,41 for eachn (unless

[_6]. More generally, such models appear in various r_:lppb'oat 7, = +00), such that over each intervat,; 7,,.1), q(t)
fields [7], [8], [9], notably as the result of stochastic aqoht is constant anck(t) solves a Stratonovich SDE [6]:
problems.

dx(t) = f(gqn,x(t))dt + glgn,x(t))dB(t), (2)
1in this context, the word “hybrid” indicates a mixture of ¢imuous and

discrete state-variables (as in [1], [2] for instance) aad hothing to do with Whe_re gn = q(m) and B(t) is a standard Brownian
the notion of “hybrid power system”. motion,



« there exists a subset of the boundaryoZ = b) Generalized FPE, non-local partthe jumping be-
Ugeo {q} x 0X,, called the guard set, such that the jumpaviour of the processg(t) translates to the pdf level as a

timest, satisfy the recursive relation: discontinuity in the probability currerj{t) on H = ®(G). To
. . express this, the outward and inward probability curren¢és a
T o= inf{t>7_1|2(t")eG}, (3)  defined—respectively ot and H—by:
for all n > 1, i.e. 7,, is the time where the proces$t) i =ji.n, 8)

first reaches the guard set after ;; " =GP =3 ny, 9)

« there exists a functio® : G — Z \ G, called the reset ) ' t_ ) ' ) ’
map, such that the state of the process after a jumpvéieren is the outward-pointing unit normal o, andn
time 7,,, n > 1, is given byz(7,) = ®(z(r;)). the unit normal onH directed from sidel to side2. Then,
The reader is referred to [6] for the basic definitions coneer2sSUming thab s a bijection betweet and!, the following

ing Markov processes and SDEs. The class of processes uﬂSLﬂ“O” holds:
consideration is very close to the stochastic hybrid systefn %z, t) = |®'| j"(®(20),t), (10)
[5], with some minor modifications.

. , : :
Formally, the SDE (2) can also be written as for all zg € G, with |®’| the Jacobian determinant df.

This equation has a nice physical interpretation: the fribiha
x(t) = £(gn,x()) + g(gn,x(t)) w(t), ) curre.nt:io”I flows out of the state space through the “sirtk”
and is instantaneously reinjected by the “sourég”

wherew(t) = B(t) is a Gaussian white noise. The whiteness c) Generalized FPE, boundary conditiontet G* and

assumption is not as restrictive as it seems. Indeed, @lorg« pa the subsets af and I where the vector fielgk is not

noises can be considered as well in this framework, usmgta?ngential Then the pdj; is continuous orH* and vanishes
shaping filter withw(¢) as an input. An example of this isOn G+

provided in section IlI-B. A proof of the generalized FPE can be found in [11] for the

one-dimensional case, and more recently [12] for the multi-

dimensional case. Both rely on the a priori assumption that a
The statez(t) of the process at time¢ > 0 is a hybrid smooth enough pdf exists—a very reasonable assumption in

random variable, which is fully characterized by the joinfost practical applications.

probability law ofx(t) andq(t). In this section, it is assumed

that a pdfp(qo, xo,t) exists, such that

B. The generalized Fokker-Planck equation

IIl. APPLICATION

As an application, the generalized Fokker-Planck equation
will now be used to assess the uncertainty in the power output
of a variable-speed wind turbine. The system is modeled
as a hybrid dynamical system whose input and output are
for any measurablés C R™. o respectively the wind speed(t) and the generator power
~ The dynamics of — p(qo, z0,¢) is given by the general- o,tpytPg(¢). The model is presented in sections 111-A and I1l-
ized Fokker-Planck equation, which will be stated belowe Thg Then the Fokker-Planck equation is stated in 11I-C, ared th
equation extends the usual FPE [10, chap. 5], [6, pp 168+168kionarity assumption is discussed in section 11I-D.aHip

which applies to diffusion processes defined by SDEs like (umerical results are obtained and compared to brute-force
to the class of stochastic hybrid processes defined in II-A. \1onte-Carlo simulations in section IlI-E.

P{q(t) = qo. x(t) € B} = /B o(do,x0, 1) dxo . (5)

a) Generalized FPE, local partthe first part of the result A. Modeling the wind turbine and its hybrid controller

is that, onZ \ (G'U @(G7)), the pdf satisfies the usual FPE:  1he gynamics of the wind turbine is given by the angular

dp ) momentum theorem:;
3¢ Tdivl) =0, (6) oy

P 7 (12)
wherediv denotes the divergence operator with respect to th w

continuous variables of the state space, fslthe so-called ;Veriﬁ%:éie rgtoérsgzet(ﬂrézebmci?:nt.g;'?e:gﬁ”zage
probability current, defined componentwise by: ynamic pow pu y Wi uroi ke
the braking power from the generator. The generator power

output is related to the braking power by the simple relation
Ps = 1 Porake Wheren is assumed constant. The aerodynamic
power is given by the algebraic relation

P drive — B brake

. 1 .
it = o - gt divipie). )
Equation (6) is a local conservation equation, which actou
for the fact that, between its jumps, the process evolves Pirive = szZ’ cp(\, 6) V3, (12)
continuously according to the SDE (2). Note that this single 2

equation actually hides a system of PDEs—one for each mo#éere p is the air density,? the rotor radius¢ the pitch
angle,A = Rw/v the tip speed ratio (TSR) ang} the power



mode B
Ps =P,
0.4+ ol IG G,nom
S [
s =3
§ o9 3 15
i3] ®
5 =
3 k5
© 02 < 1t
g 3
g N
o =
0.1t g 05f
0 0 ; ‘ ‘
0 0 0.5 1 15 2
TSRA Rotor speedy [rad/s]
Fig. 1. Power coefficient versus TSR Fig. 2. Power schedule — S(w)

coefficient. A numerical approximation af, is provided in \here} is the limiter function

[13]. Fig. 1 depicts the\ — c¢p(A, 8) characteristic, for several ) ) ) )
values of the pitch anglé. We denote by opt the maximum h(6) = min (9maX7 max (9min, 9)) :
of cp(A,0), which is attained for a unique optimal TSRy . .

T%(e tu)rbine is operated by a switghed (F:)ontroller ir:)spire%l' MerI_lng Fhe wind speed _ )
from [14], with two discrete modes. In modé (lower to Realistic wide band model_s of the honzpntal wind speed
medium wind speed region), the rotor speed is controllédt) have to account for a wide range of time scales, rang-
by adjusting the generator power outpB, following a N9 from high fr.equency turbulent phenomena to Qa|ly and
given power schedulds = S(w) that is explained below. moqthly quctuauon_s [15]. Consequently, our analysis \will
It is assumed that the generator can respond to the powafried over short time intervals of about an hour, wheftg
command almost instantaneously. In moBe(higher wind €an be modeled [16] as a stationary Gaussian process with
speed region), the output power is kept constant to its naimifiourly meanu and standard deviatiom = ~v. The factors
value Pgnom and the aerodynamic poweRye is adjusted depends on the geographical Ic_)g:atlon of the wind turbire sit
using pitch control, in order to maintain around its nominal  Several power spectral densities (PSD) have been proposed
valuewnem The controller switches from modé to modeB  in the literature for the short-term turbulent componentef
whenw = wnom, and back to model whenw = wea < Wnom wind speed, among which Von Karman'’s spectr_um [15], [17]
The strict inequality defines a hysteretic behaviour, whigch @nd Kaimal's spectrum [13], [17]. Both decay lige /% at
necessary in order to prevent chattering betwdeand B. infinity, a feature that cannot be reproduced by Brownian-

In mode A, the turbine is operated to stay as close 4lriven stochastic differential equatign&herefore, we use a

possible to the optimal TSR,y. To achieve that, the powerSimple one-dimensional SDE [18] to decribg):

schedule is set to -y
5 a(t) = - "YW=y ¢ w5 /ITdBE)  (15)
S(w) = Soplw) = ZnpRPe (@) (13) r
oPt 2 POPEA Nopt whereT = L /v, with L the turbulence length scale. Higher

This ensures that, for fixed and v, the rotor speeds = order SDEs, such as the one proposed in [15], could be
Aoptv/ R is a stable equilibrium (in fact, there are only twg/sed to obtain a bgtter approximation of the fqrementioned
stable equilibrium points, the other one being= 0). For a PSDs. However, this does not seem necessary in the problem
smooth transition between moddsand B, the output power is under consideration, since the highest frequency flucnati
raised progressively t&s nom betweenuvga andwnom, thereby are very local and therefore even out over the rotor surface
driving the turbine into the aerodynamic stall region. ThEL3]. Furthermore, it would increase the number of contirgio

resulting power schedule is shown on Fig. 2. variables, making the numerical solution of the PDE much
In modeB, following [13], a proportional controller is usedmore difficult if not "T?DOSSINE- _
for the pitch angle: The SDE (15) defines a stochastic process that can take
0 i 0—0andw < negative values. A reflecting boundary is added at 0 to
do o="andw = wnom ensure that the process stays positive at all times.
prii 0 if 6 = Omax andw > wnom,
h (K (w— wnom)) oOtherwise, 2SDE driven by fractional Brownian motions can produced tiisd of

(14) PSDs but are outside the scope of our method.



C. The generalized Fokker-Planck equation

. . 9!
Except for the presence of the reflecting barrier at 0, the v '

|
stochastic model just defined belongs to the class of sttichas !
hybrid systems described in II-A: XA | X3 mode A
« the continuous component is the vector-valued process |
x(t) = (w(t),0(t),v(t)), whose dynamics is given by
equations (11), (14) and (15); 0,0 \
« the discrete component is the state) € { A, B} of the !
switching controller; XL
« and the reset ma@ toggles the discrete component :
between moded and B without affecting the continuous |
components, i.ed(xq, A) = (xq, B) and vice versa (the
corresponding state space is depicted on Fig. 3).

The generalized FPE of section 1I-B will now be madeig. 3. State space for the wind turbine model. The curvesharindicate the

explicit for this model. The probability current (7) simipbis action of the reset mag. The bold and dashed lines symbolize respectively
the guardG and the setd = ®(G).

X2 mode B

WBA WAB w

to _
o=
o= o " | . N
o= U — D% ©(z|?), which is the stationary distribution for a fixed This

) s _ o _ method is justified by the fact that(t) is a “slow” variable
where D = «°p°/T andf is the deterministic part in the with respect to the “fast’ variable(t): as a response to a
right-hand sides of (11), (14) and (15). Therefore, ace@di small changei, — , of the mean wind speed, the distribution

to 1I-B.a, the usual FPE of z(t) conditionally too(t) relaxes quickly fromp(z|t,) to
dp %0 . p(z|v}), and therefore can be approximated pfz|o(t)) at
5 = D5 — divifp) all times.

holds on the four components of the state space, denoted b nfortunately, the only exact stationary distribution st
X1, X2, xL and X2 on Fig. 3. Furthermore, by II’-B.b the M del corresponds to the wind turbine being almost surely

pdf has a discontinuity on the séf = ®(G). Indeed, for stopped ¢ (t) = 0). Indeed, extreme wind gusts of arbitrarily
20 = (x0, B) € G, equation (10) becomes ’ large magnitude and duration are theoretically possiblgén

wind model (15). In moded, this can take the system into the
—£“(zo) p(20,t) = £“(z1) [p(zlﬂt) - p(z;,t)] , unstable region [18] and consequently force the turbinédp. s

. . e . However, such an event is extremely rare and is in fact just
wherez; = (wy ', 6, v0, A). A similar equation holds for the 5 ¢onsequence of the simplified modeling of the system. The
other part of th_e guard—i.e. fozo = (xo, 4) € G. The “interesting” behaviour of the system—when the wind tughin
boundary conditions II-B.c do not apply _here, since the Sq§working properly—is only a quasi-stationary solutiore. |

G and H* are empty (the vector fielg is parallel to the 5 nopapility distribution that is almost invariant andavets
v-axis and therefore is tangential ® and H). Finally, the \ery glowly to the exact stationary solutforNumerically, a
reflecting barrier for the wind speedtranslates as a no-flux yeji_chosen truncation of the computational domain alldevs

boundary conditiorjy = 0 on the surfacgv = 0}. find the quasi-stationary solution, which is of practicaéhest,
Remark: a careful study of the dynamics actually reveglSsiead of the undesirable exact one.

that the probability law ofk; is “degenerate” in this model,
because there can be a non-zero probability@¢hat 0 or 6, =

Omax- Therefore, the first assumption of section II-B—that a p
exists—is not totally fulfilled. However, slight modificatis ~ The numerical results presented in this section are cordpute
of the theory (omitted here for the sake of concisenessyvalldor a 2 MW variable speed wind turbine, the characteristics

(Ff' Numerical results

to write a generalized FPE anyway. of which are given in [13]. The thresholds for the switching
) ) controller are set tavag = wnom = 18 RPM andwga =
D. Stationary regime 0.95wag (see Fig. 2). The PDE is discretized in space using

The generalized FPE can be used to study the stochastidinite volume scheme [20]. The stationary distribution is
system either in transient regime—i.e. on a time intej¥gl’], computed directly using Arnoldi's methtdas the positive
for a given initial distributionpy—or in stationary regime. In and normalized eigenvector corresponding to the eigeavalu
the problem under consideration, which is the assessment of
the power output uncertainty as a function of the mean wind®This can be made more rigourous using the concepts of metastats
speedy, the latter approach seems more appropriate since #j &t rates, see [19] for instance. _

| t initial distribution can be specified. In practites Thls a_ngrlthm allows ‘to compute a few elgenyalues of a Iasgarse
re_ evan i ; p_ : P R matrix. It is implemented in ARPACK [21] and available in N&ii's ei gs
will lead to the computation of a time-independent disttid  function.



2.0 ; ; ‘ ‘ ‘ ‘ 1f
| _Woom _
18} " 08}
- .
K >
= 1.6f 2 o6l
= .
3 @
g 8
g 4 & 04}
S
© 1.2t
x 0.2t
1.0
‘ : : : ‘ : 0O 0.5 1 1.5 2
5 6 ! 8 9 10 1 12 . Power outputPg [M ‘
Wind speedv [m/s] puthe [MW]
@ v=8m/s
Fig. 5. Distribution function of the power outpiis, for a mean wind speed
190l v = 12m/s: result obtained with the generalized FPE (full line), camgul
90 to a reference Monte-Carlo simulation (cumulative hisangy.
& 1.88} —
3
g
g 1.861
5] 1r
2 1.84f 1 v=>5m/s
2 ) v =8m/s
= = v=om
£ 182} g
2 0.5t /
v o v=11m/s
1.80t o
v=15m/s
1'78 b ‘2 : ‘ 6 0 1 1 1
’ Wir:lLd speedv [m/s]14 ' 0 0.5 ! 1.5 2
P Power outputPg [MW]
(b) v =13m/s

Fig. 6. Distribution function of the power outputs, for several values of
Fig. 4. Joint pdf of the rotor speed(t) and the wind speed(t), obtained the mean wind speed. The discontinuity atPs = Pg nom for high wind
by marginalization over the pitch anglt) and the modey(¢). speeds indicates th# {¢(t) = B} > 0.

zero. This approach is very efficient since—contrary to MGxs a function of the mean wind speed (see Fig. 6 and 7).
based methods—no time-marching is required. The resultimbis a truly dynamical result, much more accurate than the
joint pdf of the rotor speedv(t) and the wind speed(¢), usual static analysis: indeed, both the fluctuations of thmelw
obtained by marginalization over the pitch angle) and the speed and the switchings of the controller are taken into
modeq(t), is shown on Fig. 4 for two differerent values of theaccount here, whereas the static analysis assumes thg-stead
mean wind speed. Other marginal pdf's could be obtainedstate relationship betweanand Pg.
as well. Computationally speaking, the PDE-based method seems
The generator power outpu?®(t) is a function of the faster than MC-based methods for this problem. The main
rotor speedw(t) and the discrete mode(t). Therefore, reasonis that, as mentionned earlier, the stationaryitalision
its probability law can be deduced from the joint pdf ofan be computed directly with the PDE approach, whereas
the state variables. Since the random variaBlé(t) has a MC techniques require the simulation of the system until the
mixed probability measure, involving an absolutely contins Stationary regime takes place. Using Matlab on a Pentium IV
component coming from mode A, and a discrete compond@t8 GHz, 1 Go of memory), the pdf’s of Fig. 4 are obtained
from mode B, it is more convenient to consider its distribnti in approximately 1 minute; comparatively, a basic MC method
function: F(Pgo) = P {Ps(t) < Pso}. Fig. 5 shows a good takes about 10 minutes to produce a “stable” approximation
agreement between the result obtained by the Fokker-Plagékhe distribution function shown on Fig. 5. A more precise
equation and a reference cumulative histogram obtained @gmparison is out of the scope of this paper, since both
Monte-Carlo simulation of the system (using the Euler saler@pproaches involve the tuning of many parameters (morgover
with approximately5.10° time steps of duratioAt = 0.01s). the convergence of a MC-based method can be improved by
Then, solving the PDE repeatedly with varyingit becomes Vvariance reduction techniques).
possible to characterize the uncertainty in the power dutpu More generally, the use of PDE-based methods is restricted
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[14]

to models of low dimension—approximately < 4 at the

present time—by memory requirements and complexity issues
Whenn < 3, they can be more efficient that MC-based meth-
ods, especially when the stationary regime is to be computﬁ%]

On the opposite, when > 5, the numerical solution of the
PDE becomes unfeasible.

[17]

IV. CONCLUSION

The generalized Fokker-Planck equation for stochastic h[)l/§]
brid systems has been presented and applied to a variable-
speed wind turbine model. From a methodological poift®!
of view, this shows that PDE-based methods can profitably
replace Monte-Carlo simulation for the dynamical analysigo]
of stochastic hybrid models—at least when the number of
continuous variables and discrete states allows the noaleripy)

solutions of the PDE. Concerning the wind turbine applaati

the distribution function of the generator power output has

been computed, for a wide range of mean wind speeds.

similar approach could be used with virtually any kind of

wind turbine and control strategy, therefore providing pow
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