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Abstract- Photonic crystals are used quite frequently to enhance the antenna gain. To understand the origin of this 
enhancement we have assimilated the PBG-Antenna structure to a Fabry-Perot cavity, where the source of the incident 
plane wave is placed inside. The PBG reflecting surfaces are composed of periodic metallic wires. The Fabry-Perot 
interferometer is usually studied with an excitation source placed outside the cavity. Here we had to extract new formulas 
for the case of the sources positioned inside the cavity. These simple formulas are found to be very helpful and very 
precise compared to the exact FDTD simulation. In the second part of the paper a simple model of the antenna is proposed 
to take into account the interactions between the cavity waves and the antenna. 
 

INTRODUCTION 
 

Placing an antenna inside a PBG structure can allow to obtain an important enhancement of the antenna gain 
[1-4], but the origin of this improvement is not clearly explained. To better understand the mechanism that creates 
the gain enhancement, we have revisited the fundamentals of Fabry-Perot cavity by generating the incident wave 
inside the cavity and not outside of it, as it’s usually done.  

In the first part of this communication we will consider an ideal cavity with infinite length in one hand and no 
interaction (absorption and reflection) between the antenna and the cavity waves in other hand. In the second part, 
we will propose a simple model for the antenna, used in FDTD method, to take into account some elementary 
interactions between the cavity and the antenna. Research works are going on to improve the source antenna model 
and to treat the practical case of finite length PBG materials. 

 
I- IDEAL STRUCTURE 

 
Let us consider a TM plane wave propagating inside the cavity in both left and right sides (Figure 1). The 

cavity is, in many cases, made of two infinitely long reflecting surfaces composed of  PBG materials [1,5,6]. Here, 
there are composed of single layers of metallic PBG (periodic infinitely long wires)  (Figure 1a). 

The periodic surfaces are characterized by the diameter “a” of the wires and the transversal period “Pt”. Figure 
2 shows the typical reflection and transmission coefficients (r, t) of these periodic surfaces with a/Pt = 0.5%.  Pt is 
maintained smaller than λ to avoid the grating lobes. 
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Figure 1 : Antenna inside a Fabry-Perot cavity. (a) : geometry (b): calculation of the transmitted wave    

 

By applying the principle of successive reflections and by superimposing the successive output waves (Figure 
1b), we obtain the transmission coefficient “T” (equation (1)) of “Antenna-Cavity” structure. The magnitude of this 
coefficient represents in fact the "gain Enhancement G = |T|”, because it corresponds to the output wave Et created 
by the cavity, relative to the incident wave Einc due to the isolated source/antenna (i.e. without cavity). 
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(r1,t1) and (r2,t2) are the reflection and transmission coefficients of the cavity walls (periodic surfaces ) (see 
top of Figure 1b).  
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Figure 2 : Magnitude of t and r coefficients  
for a periodic surface of metallic wires of 

a/Pt=0.5% 

Figure 3 : Gain enhancement G. Comparison between 
FDTD method and  formula (2) ( D=40mm, Pt=40mm, 

a=2mm) 
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where t1 = t2= t , r1 = r2 = r  and  D1 = D2 = D 
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Figure 4 : Maximum and minimum envelops 

( D=40mm, Pt =40mm, a=2mm) 
Figure 5  : Determination of the transmission pick 
frequency. ( D=40mm, Pt =40mm, a=2mm) 
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Figure 6 : (a) : Gain and envelop (D=41.7mm , Pt =0.9mm, a=0.36mm)     (b) : zoom on the transmission pick.
 
When the two periodic surfaces are identical, the “T” expression is simplified to the relation   : 

D2jkre1
tT
−−

= ;   G = |T|,    (2) 

 

This formula is valid as far as the distance D is larger than Pt [7]. 
In Figure 3 the analytical formula (2) is compared to the exact gain value obtained by a FDTD simulation. One 

can see that there is a perfect agreement between the results. 



It is interesting to note that the maximum and minimum of G are given respectively by the envelop curves
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and 
r1

t
+

, as it is shown in Figure 4. Note that the gain value can theoretically become very large. Figure 6 

illustrates the results obtained for a second example of periodic surface (D=41.7mm, Pt=0.9mm, a=0.36mm) for 
which the maximum gain can reach 80. In practice, this maximum can be unreachable because of the interactions 
between cavity waves and the non ideal source (antenna). In section II of this communication a rudimentary source 
model is proposed to obtain a better approximation for the gain enhancement. 

We would like to mention at this point that this gain improvement is not associated to any “directivity 
improvement”, because actually the incident and transmitted waves Einc and Et are both plane waves, having already 
the maximum directivity . 

Furthermore, the pick frequency can be obtained by applying resonance condition ϕr = 2kD-2nπ, where 
k=2πf/c; n=0, 1, 2, …and ϕr is the phase of “r” (cf. Figure 5). 

 
II- A SIMPLE  MODEL OF THE ANTENNA 

 
A real antenna interacts with cavity waves by diffracting and absorbing them partly. As the waves are plane the 

diffraction leads to reflection and transmission waves. Then we consider the reflection coefficient ra and the 
transmission coefficient ta due to the antenna itself (see Figure 7a). Note that the antenna absorption leads to the 
condition |ra|2+ |ta|2 <1. Using these parameters allows to obtain the new transmission coefficient taking into account 
the antenna presence : 
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Figure 7 : (a) : Antenna interacting with cavity waves (b) : Antenna model composed of an infinite plane 

of point voltage sources in series with point resistances (R)    
 

In FDTD method, the incident wave is created by an uniform distribution of ideal voltage sources placed all 
over the antenna plane and having no interaction with the cavity waves. To modelize the effect of the antenna we 
have added a resistance “R” in series with each ideal source (Figure 7b). 

Figure 8 shows new gain results G2 for the example of R=2 kΩ. We observe a very good agreement between 
the FDTD solution and the formula (3). We can also note the new maximum an minimum envelops in Figure 8b. 

The magnitude of reflection (ra) and transmission (ta) coefficients of the new source (antenna) are given in   
Figure 9a. The phases of ra and ta (not shown here) are relatively constant and equals to π and 0, respectively.  

  Figure 9b gives G2 as a function of R. There are two extremum cases: small |ra| and large |ra|. For small |ra| 
(|ta| ≅ 1), G2 has the same form as the ideal case (Figure 3&  Figure 9b); When |ra| ≅ 1 (|ta| ≅ 0) the pick frequency is 
approximately twice that of the ideal case (  Figure 9b, R=1Ω). In this case, the antenna itself becomes a perfect 
reflecting plane (ra ≅ -1), giving rise to a new cavity composed of only one periodic surface. For these extremum 
cases the gain maximum is limited by the same envelop as in Figure 4. The case of real antennae is somewhere in 
between the two extreme cases. One notes that the gain due to the real antenna is less than that of  extremum cases. 
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Figure 8 :    Gain enhancement G2  for D=40mm, Pt=40mm, a=2mm, R=2kΩ  (a) : comparison between FDTD 

method and  formula (3)  (b) : maximum and minimum envelops   
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  Figure 9 :  (a) : Magnitude of reflection (ra) and transmission (ta) coefficients of the plane antenna for various 
 values of  R  (b) : Gain G2  for various values of series resistance R (D=40mm, Pt=40mm, a=2mm) 

 
CONCLUSION 

 
Inserting an antenna inside a cavity allows to enhance largely its gain. However the gain improvement does not 

mean directivity improvement. Indeed, the wave front, with and without cavity, remains the same (i.e. plane wave). 
Hence, the directivity, with  and without cavity, does not change.   

We have first studied the gain improvement due to a Fabry-Perot cavity effect. Then we have proposed a more 
realistic source and compared the ideal and non ideal results. We continue to work on  models for real sources and 
we consider treating real cavities where the physical dimensions are finite. We are also studying conformal cavities 
to replace the Fabry-Perot one. 
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