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Abstract: The command of a microprocessor-controlled lower limb prosthesis classically relies on
the gait mode recognition. Real time computation of the pose of the prosthesis (i.e., attitude and
trajectory) is useful for the correct identification of these modes. In this paper, we present and evaluate
an algorithm for the computation of the pose of a lower limb prosthesis, under the constraints of real
time applications and limited computing resources. This algorithm uses a nonlinear complementary
filter with a variable gain to estimate the attitude of the shank. The trajectory is then computed from
the double integration of the accelerometer data corrected from the kinematics of a model of inverted
pendulum rolling on a curved arc foot. The results of the proposed algorithm are evaluated against
the optoelectronic measurements of walking trials of three people with transfemoral amputation. The
root mean square error (RMSE) of the estimated attitude is around 3◦, close to the Kalman-based
algorithm results reported in similar conditions. The real time correction of the integration of the
inertial measurement unit (IMU) acceleration decreases the trajectory error by a factor of 2.5 compared
to its direct integration which will result in an improvement of the gait mode recognition.

Keywords: lower limb prosthesis; inertial measurement unit; real time; attitude estimation; trajectory
reconstruction; strapdown integration

1. Introduction

Over the past decade, prosthetic devices controlled by microprocessor have improved the quality
of life of people with lower limb amputation [1]. These devices use different sensors to adapt their
behavior to varying terrain. Among these sensors, inertial measurement units (IMUs) can be used to
estimate the pose (position and orientation) of a prosthetic segment in order to differentiate between
walking situations [2].

To do so, accelerometer and gyroscope data have to be fused. Based on the human segment
orientation, fusion algorithms can be classified into three major categories. Kalman-based algorithms
are considered as the gold standard [3], but their robustness and real time implementation can be
challenging [4]. As an alternative, some methods have been developed to correct the drift of gyroscope
integration but are specific to the segment where the IMU is placed, implying strong hypotheses on the
segment motion [5,6]. Lastly, a family of methods based on the complementary filter [4,7] have been
proposed to quantify the orientation with an accuracy equivalent to the Kalman-based algorithms and
an easier real time implementation. This kind of approach has already been evaluated to quantify the
orientation of the lower trunk during gait [8].

In the prosthetic field, IMU placement are preferred at the shank [9], which is submitted to high
accelerations and impacts during walking. For micro aerial vehicles, nonlinear complementary filters
with variable gain have been proposed to limit the repercussion of high accelerations on the orientation
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estimation [10]. To date, these filters have not been evaluated when tracking the attitude (i.e., roll and
pitch) of the lower limb segments during gait.

In addition, from the orientation of the IMU, gravity-free acceleration is integrated to assess the
trajectory of the IMU. However, double integration of the acceleration results in exponential drift [11];
hence correction methods are mandatory. When the IMU is placed on the foot, the assumption of
zero-velocity during a part of the stance phase is frequently used [12–14]. With an IMU placed at
the shank, additional kinematic hypothesis is necessary to assess the velocity at a specific time event
and correct the integration [2,15]. To our knowledge, no previous study reported the accuracy of
the trajectory of shank points obtained with these techniques compared to the direct optoelectronic
motion capture.

The aims of this study are: (1) To evaluate the estimation of a prosthetic shank attitude from a
nonlinear complementary filter with a variable gain; and (2) to assess and evaluate the trajectory of
a prosthesis point using a robust kinematic model of the lower limb during stance. The proposed
method was designed to allow real time application with low computational resources. The pose
estimated from a single IMU placed on the prosthetic shank of three people with amputation during
gait were processed. The pose obtained from optoelectronic measurement was used as a reference for
comparison purpose.

2. Materials and Methods

2.1. Attitude Estimation

The definition of the IMU frame used in this study to determine the attitude of the shank are
presented in Figure 1. Euler angles were computed from the angular position matrix of the IMU frame
relative to a global earth-fixed frame. A sequence z y’ x” (mobile axis) was chosen, which gave the
nautical angles (i.e., yaw, pitch, and roll) and prevented any effect of the yaw estimation error on the
other two angles.
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Figure 1. Definition of the inertial measurement unit (IMU) and global earth-fixed frames and
representation of the three angles defining the orientation of the IMU relative to the global frame.

The attitude (pitch and roll) of the prosthesis was obtained using a nonlinear complementary
filter with variable gain. This filter, adapted from Valenti et al., uses the Equation (1) to fuse angular
estimations from the accelerometer and from the gyroscope integration. This filter was chosen because
it can easily be implemented without a magnetometer, and with low computational power [10].

qt =
(
qt−1 +

.
qω∆t

)
⊗ ((1− α(e))qI + α(e)∆qacc) (1)

In this equation, all the terms are expressed in the global earth-fixed frame. qt is the quaternion
representative of the attitude estimation at time step t,

.
qω is the quaternion representing the angular

velocity from the gyroscope and ∆t is the elapsed time since the last integration. The first part of the
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equation corresponds to the integration of the gyroscope between two time steps using the trapezoidal
rule. In the second part of this equation, ∆qacc represents the orientation of the gravity relatively to
its estimation using the data from the accelerometer. qI is the identity quaternion. This second part
corresponds to a low pass filtering of ∆qacc which time constant depends on a gain α(e).

α(e) varies according to the error e computed as the normalized difference between the norms of
the acceleration and the gravity. For errors lower than a first threshold th1, α(e) equals αcst, and for
errors higher than a second threshold th2, the gain is set to zero. In between the two thresholds the
gain decreases linearly as a function of the error.

During the swing phase of gait, the acceleration can be of magnitude close to the one of the gravity
vector but with very different orientation, leading to the computation of a null error e. To account for this
particularity, a penalization term (swing) was added in order to discard accelerometer measurements
during the swing phase (Equation (2)).

e =

∣∣∣∣∣∣∣∣∣∣∣∣ [→a ]∣∣∣∣∣∣∣∣−g
∣∣∣∣

g
+ swing (2)

swing equals one during the swing phase and zero otherwise.
Finally, without magnetometer, it is not possible to correct the drift of the yaw angle. This angle

was simply reset at the beginning of each gait cycle.
The numerical values used in this study are given in Table 1.

Table 1. Numerical constants used in the study.

Variable Numerical Value

∆t (s) 0.01
αcst 0.02
th1 0.1
th2 0.15

2.2. Trajectory Estimation

In the present study, we chose to compute the trajectory of the center of the knee (K Figure 2).
It should be noted however that the trajectory of any point of the shank could be obtained in a similar
way. The proposed method combines the use of a kinematic model during unipodal stance and double
integration of the acceleration of the IMU during swing. The model used is represented in Figure 2.
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During the unipodal stance, the velocity of K was obtained by the means of a model of an
inverted pendulum rolling on a curved arc foot (Figure 2). The velocity of the center of the arc

([
−→
VC]R0

) (C Figure 2) was computed with a rolling without sliding hypothesis using reference data from
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Hansen et al. to define the round shape dimensions [16]. The velocity of K ([
−−−−−−→
VKstance]R0

) was finally
obtained in the global earth-fixed frame using the attitude estimation obtained (Equation (3)).

[
−−−−−−→
VKstance]R0

= [
−→
VC]R0

+ [
−−→
KC]R0

∧ [
−→
Ω ]R0

(3)

During the swing phase, the accelerometer data were projected in the global earth-fixed frame to

remove the gravity acceleration. The acceleration of the IMU ([
−→
AI ]R0

) (I Figure 2) was then used to

compute the acceleration of K ([
−→
AK]R0

) using Equation (4).

[
−→
AK]R0

= [
−→
AI ]R0

+ [
−→
KI ]R0

∧

d[
−→
Ω ]R0

dt
+

(
[
−→
Ω ]R0

∧ [
−→
KI ]R0

)
∧ [
−→
Ω ]R0

(4)

[
−→
AK]R0

is then integrated to obtain the velocity of K during the swing phase [
−−−−−−→
VKswing]R0

.
Figure 3 illustrates the method on an example of evolution of the antero-posterior component of

[
−−−−−−→
VKswing]R0

and [
−−−−−−→
VKstance]R0
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The difference at the beginning of unipodal stance (US) between both the estimations of [
−→
VK]R0

was

computed and referred hereafter as [
−−−−−−−−→
VKdi f f @US]R0

(Figure 3). This error was used for the correction of

the integration assuming a constant bias on the swing acceleration
[
−−−−−−→
VKdi f f @US ]R0

T where T is the duration
of integration.

A first method for the correction removes this bias from the obtained swing velocity a posteriori
(i.e., correction of the previous swing phase) using Equation (5). The corrected velocity is referred to as

[
−−−−−−→
VKpost ]R0

(Figure 3).

[
−−−−−−−→

VKpost(t)]R0
=

t∫
t−T

[
−→
AK]R0

dt− t×
[
−−−−−−−−→
VKdi f f @US]R0

T
(5)

A second method updated a correction term at each ith cycle ([ci]R0
) according to Equation (6).
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[ci]R0
= [ci−1]R0

+ K
[
−−−−−−−−→
VKdi f f @US]R0

T
(6)

[ci]R0
can be used to correct a priori (i.e., in real time) the integration at each time step (t) using

Equation (7). The term K is a constant meant to avoid divergence of the correction term when

[
−−−−−−−→
VKdi f f @HS ]R0

T is noisy. In this study, we set K = 0.8 to impose a quick convergence. For long-term
acquisitions, this constant should be lower.

The obtained velocity is referred to as [
−−−−−−→
VKprior ]R0

. The Figure 4 illustrates the effect of this correction.

[
−−−−−−−→

VKprior(t)]R0
= [
−−−−−−−−−−−→

VKprior(t− 1)]R0
+

t∫
t−1

(
[
−→
AK]R0

− [ci]R0

)
dt (7)
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Figure 4. Illustration of a priori correction on an example of anteroposterior component of the
knee velocity.

The last step to obtain the trajectory is the direct integration of the corrected velocity by applying a
zero reset to the position at US. In this study, all the integrations are performed using the trapezoidal rule.

2.3. Experiments

These algorithms are applied on the data of three people with transfemoral amputation following
a protocol approved by the Ethics Committee (Comité de Protection des Personnes CPP NX060336).
A total of 4, 20 and 12 gait cycles were extracted for participants 1, 2, and 3 respectively. Hence a total
of 36 gait cycles were considered. The participants were asked to walk at their self-selected speed on
the ground level. Anthropometric data of the three participants are presented in the Table 2.

Table 2. Anthropometric data of the participants of the present study.

Participant N◦1 N◦2 N◦3

Height (m) 1.75 1.72 1.75
Weight (kg) 57 98 95

Gender M M M
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These participants were equipped with a custom datalogger strapped onto their prosthesis.
This datalogger used a microcontroller (Arduino nano, Arduino®) to transmit the data from a low
cost IMU (MPU6050, InvenSense inc.®, $0.8) to a laptop using a Bluetooth connection. The Bluetooth
connection and data collection were managed on the laptop using Matlab software (Matlab R2016b,
MathWorks®). The data were sampled at 100 Hz.

The reference measurement of the shank pose was obtained from an optoelectronic motion capture
(MOCAP) system (Vicon, Oxford, UK). The orientation of the shank was derived from the markers
attached to the shank, and the trajectory of the knee was assumed to be the mean trajectory of lateral
and medial condyles.

2.4. Data Analysis

For the orientation, the root mean square errors (RMSE) of the estimation of the attitude (roll and
pitch) provided by the method described in this article relative to MOCAP was computed for each gait
cycle. Similarly, we computed the RMSE of the estimation of the trajectory of the knee joint center.
Average, minimum, and maximum were then calculated across all gait cycles for each participant.

In order to compare our results with the literature, we computed the difference between the
estimations of the stride length from the knee trajectory, obtained with the IMU and with MOCAP,
at each gait cycle. This error was then normalized using the MOCAP estimation and averaged across
all gait cycles. Extremum values were also extracted for each participant.

3. Results

Figure 5 shows the average attitude across all gait cycles, and the envelope containing all curves
for each participant according to the gait cycle and for both methods (IMU-based and MOCAP).
The errors on the attitude estimation are reported in Table 3. The RMSE on the trajectory are given in
Table 4, and the stride length errors are given in Table 5. For all errors presented results includes mean
across all cycles of the considered participant, as well as minimum and maximum.
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Table 3. Attitude estimation for each participant (mean(min/max)). The roll and pitch angles are in the
frontal and sagittal planes respectively.

Participant Gait Speed
(km/h)

Number of Gait
Cycles

RMSE Roll (◦)
Mean (min/max)

RMSE Pitch (◦)
Mean (min/max)

N◦1 2.64 4 1.32 (0.82/1.82) 1.98 (1.49/2.49)
N◦2 4.74 20 3.19 (2.57/5.63) 2.47 (1.30/5.12)
N◦3 4.79 12 2.54 (1.53/3.87) 2.51 (0.97/5.32)

Overall 4.06 36 2.77 (0.82/5.63) 2.43 (0.97/5.32)

Table 4. Root mean square error (RMSE) using direct integration, a priori correction and a posteriori
correction from IMU data compared to MOCAP data.

Trajectory Error Participant
A Posteriori

Correction Mean
(min/max) (cm)

A Priori
Correction Mean
(min/max) (cm)

Direct Integration
Mean (min/max)

(cm)

RMSE along X

N◦1 2.2 (0.9/3.3) 3.6 (0.9/7.5) 239.4 (40.4/350.5)
N◦2 3.0 (1.7/7.0) 3.8 (1.0/6.5) 163.1 (3.9/389.4)
N◦3 2.8 (1.1/3.9) 4.0 (1.1/6.6) 171.8 (115.4/808.6)

overall 2.8 (0.9/7.0) 3.2 (0.9/7.5) 233.9 (3.9/808.6)

RMSE along Z

N◦1 1.8 (1.5/2.2) 2.3 (1.8/3.6) 18.5 (2.8/25.2)
N◦2 2.0 (0.7/4.8) 2.8 (1.0/7.0) 39.0 (19.5/75.9)
N◦3 2.1 (1.9/9.8) 2.6 (1.0/4.4) 31.4 (37.6/139.0)

overall 2.8 (0.7/9.8) 2.8 (1.0/7.0) 55.2 (2.8/139.0)

Table 5. Errors on the stride length estimation. Mean stride length error and % RMSE are computed
using the estimation of the stride length of each gait cycle.

Stride Length
Error Participant

A Posteriori
Correction

(% Stride Length)

A Priori
Correction

(% Stride Length)

Direct Integration
(% Stride Length)

Mean(min/max)
stride length error

N◦1 −8.4 (−12.5/−3.4) −13.0 (−28.3/−1.3) 2.0 (−4.2/8.7)
N◦2 −5.2 (−11.8/1.0) −5.8 (−12.5/4.4) −16.4 (−26.5/−5.4)
N◦3 −3.6 (−6.7/−0.5) 4.3 (−3.3/13.4) −31.0 (−48.0/−20.4)

overall −5.1 (−12.5/1.0) −3.6 (−28.3/13.4) −18.6 (−48.0/8.7)

4. Discussion

4.1. Algorithm Evaluation

The aims of the study are: (1) To evaluate the estimation of prosthetic shank attitude from a
nonlinear complementary filter with a variable gain; (2) to assess and evaluate the trajectory of the
prosthetic knee using a robust kinematic model of the lower limb during stance. The proposed method
was designed to allow real time application with low computational resources.

In the literature, Kalman-based algorithms are often taken as a reference for attitude estimation
using IMU with RMSE on the orientation of the trunk during gait reported to be as small as 1◦ [17].
Yet this precision decreases for segments submitted to rapid movements with large variations of
centripetal acceleration [18] and can lead to RMSE around 3◦ for the shank [19,20]. In addition,
in the context of estimation of the attitude of a prosthetic device, Kalman-based algorithms are
computationally expensive which limits their real time implementation. In contrast, in this study,
a nonlinear complementary filter and a variable gain strategy adapted from Valenti et al. was used to
obtain the attitude of the prosthetic shank with a low computational cost [10]. Overall, the RMSEs
were 2.8◦ for the pitch angle and 2.4◦ for the roll angle for gait at an average speed of 4 km/h. Thus,
the attitude estimation is close to the one obtained from the Kalman filter but requires much less
computational power, making onboard real-time implementation easier. Moreover, this algorithm
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overcomes the intrinsic limitations of the Kalman filter, such as the need for a high sampling rate, and
linearization issues [4].

For trajectory estimation, few studies assessed the full trajectory of the foot and evaluated this
trajectory qualitatively. Quantitative evaluation was only performed on parameters extracted from this
trajectory such as the mean error on the stride length. Most of these studies used an IMU placed on the
foot and assumption of zero velocity update (ZVU) to correct the integration a posteriori. Mariani et
al. reported an error on the stride length estimation of 1.3 ± 6.5% (mean ± standard deviation) [14].
With an IMU placed on the tibia, the ZVU hypothesis is no longer relevant [21]. Yang and Li used
direct integration of the gravity free acceleration and obtained an error between 13.5% and 21.5%. They
also adjusted their results using a linear regression model based on one point estimation of the velocity
and the reference step length. This strategy reduced this error between 2.4% and 5.4% [22].

In the present study, we proposed a model of the movement of the prosthetic shank represented by
an inverted pendulum rolling on a curved arc foot during the whole unipodal stance. This kinematic
model gave an estimation of the linear velocity of the tibia during stance, which can be used to correct
the integration. When the correction was performed a posteriori, the stride length was estimated with
an error of −5.1 (−12.5/1.0) % (mean (min/max)) of the stride length. The non-zero mean indicate a
slight underestimation of the stride length. Compared to the literature, the a posteriori correction gives
results similar to ZVU strategies and close to the adjusted results of Yang and Li, which suggests that
the model on which the trajectory estimation is based is a good alternative to the ZVU when the IMU
is placed on the tibia.

It should be noted however that for one subject, the stride length error was higher. This can
be explained by the fact that this participant had a very particular gait pattern that might not be
represented by the inverted pendulum rolling on a curved arc foot model especially when using an
average round shape of the curved arc foot. Personalization of this model would probably result
in a more accurate trajectory estimation. For a prosthetic foot this round shape mainly depends on
the prosthetic foot design and its alignment [16], personalization could therefore be made using the
characteristics of the prosthetic foot and a measurement of the foot alignment.

In the context of prosthetic control, we need to obtain an a priori estimation of the kinematics.
In this study, a correction at each frame of the integration is proposed which is an alternative of direct
integration used in the literature to obtain trajectory during swing phase in real time [2,23]. The results
obtained with this algorithm allow a decrease in the average error and in the dispersion by a 2.5 factor
compared to a direct integration (Table 5). Looking at the RMSE on the full trajectory, it appears that
the estimation is improved in both axes by a fair amount (Table 4).

4.2. Limitations

The computation of [
−−−−−−−−→
VKdi f f @US]R0

might not be optimal. In the presented algorithm, [
−−−−−−−−→
VKdi f f @US]R0

is computed at the start of the unipodal stance, after the heel strike, thus the dynamic effects probably
affects this estimation of the drift due to the first integration of the gravity free acceleration. Bergamini
et al. reported that the drift due to numerical integration might depend on the amplitude of the
integrated data [8]. This is also supported by a better estimation of stride length using a nonlinear
correction developed by Mariani et al. compared to a linear one [14]. A possible improvement is to
take advantage of the model to calculate an error using the whole unipodal stance. The correction
could moreover be modulated according to the amplitude of the integrated data.

The results presented herein are obtained with data from a low cost IMU (MPU 6050, InvenSence,
0.8 $). When compared to other commercially available sensors (MT1i 1-series, Xsens), this sensor
shows limitations. Specifically, the noise density of the accelerometer and the nonlinearity of the
gyroscope are twice that of Xsens sensor. There are also differences in terms of zero rate and zero g
output [24,25]. For attitude estimation the noise density of the gyroscope is similar for both sensors
and the zero rate output can be removed easily. For trajectory computation however, the higher noise
density on accelerometer data favors the accumulation of errors during the successive integrations.
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The evaluation of the algorithms was based on the data obtained from only three people with
transfemoral amputation. This small number of participation is due to the difficulties to recruit people
with transfemoral amputation presenting good walking abilities (no walking aid). Due to tiredness
(from other acquisitions) of the 1st participant, acquisitions were stopped, hence he only completed
four gait cycles. The conclusions presented herein are tainted with individual bias and should be taken
as preliminary results.

It should be noted, however, that very few studies have tested their algorithms on amputated
people for whom the impacts during gait are not filtered by soft tissues. Moreover these studies often
recruit only a limited number of participants with lower limb amputation (e.g., [2,23,26–29]).

For people with above knee amputation, the ferromagnetic materials and the presence of motors
in microprocessor prosthetic leg makes magnetometer unusable [30]. Hence in this study the yaw
angle could not be corrected. However, attention was paid to the choice of the filter and the axis
sequence for the calculation of the angles. For trajectory reconstruction it has probably only a limited
effect on the trajectory in the sagittal plane during straight line walking but it might be of importance
for out of plane ambulation. More work would be necessary to obtain the full 3D trajectory, including
correction of the yaw angle and computation of a reference velocity in the frontal plane. However the
trajectory in the sagittal plane is usually sufficient for prosthetic control [2,23].

The presented algorithm is primarily designed for prostheses control (i.e., real time activity
recognition), but it can also be useful for orthosis, exoskeleton, or activity monitoring device.
This algorithm could also be adapted for an IMU placed more proximally with a modification of
the model describing the unipodal stance phase kinematics. Moreover its application range is not limited
to activity recognition, it could also be used for activity monitoring of specific pathologies as suggested
in [31].

5. Conclusions

In this study an algorithm was developed for real time pose estimation, with consideration for
computation power limitation in an embedded system. The results presented are obtained owing to
walking trials of three people with transfemoral amputation using one low cost IMU on the shank.
For attitude estimation, a nonlinear complementary filter with a variable gain strategy was used and
showed results close to Kalman-based algorithms. This study suggests that this type of filter is suitable
for prosthetic lower limb attitude estimation.

The velocity computation is based on the integration of the accelerometer data corrected owing
to a model of inverted pendulum rolling on the curved arc foot. The trajectory is obtained owing to
direct integration of this velocity. Two methods of correction of the integrated velocity are evaluated.
A posteriori correction results are close to the literature. The a priori method decreased the error by
2.5 regarding the direct integration. This algorithms should allow a better real time estimation of the
trajectory having the potential to permit a faster gait mode detection [26].

Future work will focus on the improvement of the trajectory drift estimation by taking more
advantage of the motion model during the unipodal stance as discussed previously. Implementation
on prosthesis and test during non-level ambulation for gait mode detection is also planned.
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