Markovian tricks for non-Markovian trees: contour process, extinction and scaling limits

Abstract : In this work, we study a family of non-Markovian trees modeling populations where individuals live and reproduce independently with possibly time-dependent birth-rate and lifetime distribution. To this end, we use the coding process introduced by Lambert. We show that, in our situation, this process is no longer a Lévy process but remains a Feller process and we give a complete characterization of its generator. This allows us to study the model through well-known Markov processes techniques. On one hand, introducing a scale function for such processes allows us to get necessary and sufficient conditions for extinction or non-extinction and to characterize the law of such trees conditioned on these events. On the other hand, using Lyapounov drift techniques , we get another set of, easily checkable, sufficient criteria for extinction or non-extinction and some tail estimates for the tree length. Finally, we also study scaling limits of such random trees and observe that the Bessel tree appears naturally.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées
Contributeur : Benoît Henry <>
Soumis le : mercredi 24 janvier 2018 - 09:04:10
Dernière modification le : vendredi 27 juillet 2018 - 15:12:35
Document(s) archivé(s) le : jeudi 24 mai 2018 - 15:31:35


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01678359, version 2
  • ARXIV : 1801.03284



Bertrand Cloez, Benoît Henry. Markovian tricks for non-Markovian trees: contour process, extinction and scaling limits. 2018. 〈hal-01678359v2〉



Consultations de la notice


Téléchargements de fichiers