Skip to Main content Skip to Navigation
Conference papers

Effects of biomolecules on the electrokinetics of colloidal nanoparticles in liquid suspension

Abstract : Electric fields can induce various types of motion in liquid suspensions of colloidal nanoparticles. These electrokinetic phenomena depend on the parameters of the electric field (frequency, amplitude, 3D topology), the particles (size, shape, composition) and the suspending liquid (polarizability, ionic strength, pH). In particular, the dielectrophoretic force on submicron colloidal particles is dependent on the properties of the electric double layer (the "ion cloud") around these particles. This dependence provides a mechanism for detecting and quantifying interactions between biomolecules and these nanoparticles, which can be combined with optical and spectroscopic measurements. Here, we report on functionalized plasmonic nanoparticles that are tracked inside microfluidic systems by dark-field video-microscopy. A high-gradient AC electric field is set up using transparent micro-electrodes. Electrohydrodynamic motion of the entire fluid and dielectrophoretic trapping of individual particles can be analyzed quantitatively by numerical methods. By switching the electric field synchronously with the video acquisition, the effect of biomolecules on the electrokinetic trapping can be quantified. The electromicrofluidic devices allow also for rapid measurement of diffusion coefficients.
Complete list of metadata

Cited literature [31 references]  Display  Hide  Download
Contributor : Martinus H. V. Werts Connect in order to contact the contributor
Submitted on : Saturday, November 18, 2017 - 3:18:02 PM
Last modification on : Saturday, January 15, 2022 - 3:51:03 AM
Long-term archiving on: : Monday, February 19, 2018 - 12:50:35 PM


Files produced by the author(s)



Clyde Midelet, J.-Y. Lin, Sung Tsang, Chen-Li Sun, Johanna Midelet, et al.. Effects of biomolecules on the electrokinetics of colloidal nanoparticles in liquid suspension. SPIE BIOS, Jan 2017, San Francisco, CA, United States. pp.100780T, ⟨10.1117/12.2252470⟩. ⟨hal-01501667⟩



Les métriques sont temporairement indisponibles