Skip to Main content Skip to Navigation

hal-03295547v1  Book sections
Thomas GeraldHadi ZaatitiHatem Hajri. A Practical Hands-on for Learning Graph Data Communities on Manifolds
Geometric Structures of Statistical Physics, Information Geometry, and Learning, pp.428-459, 2021, ⟨10.1007/978-3-030-77957-3_21⟩
hal-03085884v1  Journal articles
Théo CombeyAntónio LoisonMaxime FaucherHatem Hajri. Probabilistic Jacobian-Based Saliency Maps Attacks
Machine Learning and Knowledge Extraction, MDPI, 2020, 2 (4), pp.558 - 578. ⟨10.3390/make2040030⟩
hal-02908006v1  Conference papers
Nina MiolaneNicolas GuiguiHadi ZaatitiChristian ShewmakeHatem Hajri et al.  Introduction to Geometric Learning in Python with Geomstats
SciPy 2020 - 19th Python in Science Conference, Jul 2020, Austin, Texas, United States. pp.48-57, ⟨10.25080/Majora-342d178e-007⟩
hal-02536154v2  Journal articles
Nina MiolaneNicolas GuiguiAlice Le BrigantJohan MatheBenjamin Hou et al.  Geomstats: A Python Package for Riemannian Geometry in Machine Learning
Journal of Machine Learning Research, Microtome Publishing, 2020, 21 (223), pp.1-9
hal-03550949v1  Conference papers
Manon CesaireLucas SchottHatem HajriSylvain LamprierPatrick Gallinari. Stochastic Sparse Adversarial Attacks
2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI), Nov 2021, Washington, United States. pp.1247-1254, ⟨10.1109/ICTAI52525.2021.00198⟩