Skip to Main content Skip to Navigation
New interface

Contributions to an electromagnetic and microfluidic microsystem for immunological detection using magnetic nanoparticles

Abstract : The ever-increasing exchange of people and goods these last decades creates pandemic risks that should be prevented by containing the hazardous antigens in the region of the outbreak. Therefore, the rapid detection of a biological entity is critical to tackle this issue and others like environment contamination and bioterrorism.Consequently, a multidisciplinary project between Sorbonne Université in Paris and RWTH University in Aachen has been conducted to create a completely integrated lab-on-a-chip (LOC) for easy, rapid and cost-effective immunoassays.The pathogen sensing system is composed of a microfluidic channel surrounded by planar PCB microcoils, which are responsible for the emission and the detection of magnetic fields. This system allows the detection of magnetic nanoparticles (MNP) used for immunoassays in a “sandwich” antigen-antibody configuration. Using microfluidics allows us to test very small volume samples quickly. We successfully tested this device with different concentrations of nanoparticles, different microfluidic channel layouts, different types of nanoparticles and different materials for the microfluidic channel. Using the frequency mixing magnetic detection technique, a LOD of 15 ng/µL for 20 nm core sized MNP has been achieved with a sample volume of 14 µL corresponding to a drop of blood. Antibody coating was also achieved on a Poly(methyl methacrylate) (PMMA) surface which is a more suitable material than the classically used polydimethylsiloxane (PDMS) for our application. In this thesis, emphasis is put on the improvement of the device prototype and the surface functionalization of the microfluidic channel with antibodies.
Document type :
Complete list of metadata
Contributor : ABES STAR :  Contact
Submitted on : Wednesday, October 27, 2021 - 6:36:11 PM
Last modification on : Friday, January 21, 2022 - 3:28:30 AM
Long-term archiving on: : Friday, January 28, 2022 - 7:31:46 PM


Version validated by the jury (STAR)


  • HAL Id : tel-03406262, version 1


Benjamin Garlan. Contributions to an electromagnetic and microfluidic microsystem for immunological detection using magnetic nanoparticles. Automatique / Robotique. Sorbonne Université, 2019. Français. ⟨NNT : 2019SORUS567⟩. ⟨tel-03406262⟩



Record views


Files downloads