Accéder directement au contenu Accéder directement à la navigation
Thèse

Apprentissage profond sous contraintes biomédicales pour la prédiction de la glycémie future de patients diabétiques

Résumé : Malgré ses récents succès en vision assistée par ordinateur ou en traduction automatique, l’utilisation de l’apprentissage profond dans le secteur biomédical fait face à de nombreux challenges. Parmi eux, nous comptons l’accès difficile à des données en quantité et qualité suffisantes, ainsi que le besoin en l’interopérabilité et en l’interprétabilité des modèles. Dans cette thèse, nous nous intéressons à ces différentes problématiques à la lueur de la création de modèles prédisant la glycémie future de patients diabétiques. De tels modèles permettraient aux patients d’anticiper les variations de leur glycémie au quotidien, les aidant ainsi à mieux la réguler afin d’éviter les états d’hypoglycémie et d’hyperglycémie.Pour cela, nous utilisons trois ensembles de données. Tandis que le premier a été récolté à l’occasion de cette thèse sur plusieurs patients diabétiques de type 2, les deux autres sont composés de patients diabétiques de type 1, à la fois réels et virtuels. Dans l’ensemble des études, nous utilisons les données passées de glycémie, d’insuline et de glucides de chaque patient pour construire des modèles personnalisés prédisant la glycémie du patient 30 minutes dans le futur.Dans un premier temps, nous faisons une analyse détaillée de l’état de l’art en construisant une base de résultats de référence open source de modèles prédictifs de glycémie. Bien que prometteurs, nous mettons en évidence la difficulté qu’ont les modèles profonds à effectuer des prédictions qui soient à la fois précises et sans danger pour le patient.Afin d’améliorer l’acceptabilité clinique des modèles, nous proposons d’intégrer des contraintes cliniques au sein de l’apprentissage des modèles. À cet effet nous proposons de nouvelles fonctions de coût permettant d’améliorer la cohérence des prédictions et de se focaliser davantage sur les erreurs de prédictions cliniquement dangereuses. Nous explorons son utilisation pratique à travers un algorithme permettant d’obtenir un modèle maximisant la précision des prédictions tout en respectant des contraintes cliniques fixées au préalable.Puis, nous étudions la piste de l’apprentissage par transfert pour améliorer les performances des modèles prédictifs de glycémie. Celui-ci permet de faciliter l’apprentissage des modèles personnalisés aux patients en réutilisant les connaissances apprises sur d’autres patients. En particulier nous proposons le cadre de l’apprentissage par transfert multi-sources adverse. Celui-ci permet de significativement améliorer les performances des modèles en permettant l’apprentissage de connaissances a priori qui sont plus générales, car agnostiques des patients sources du transfert. Nous investiguons différents scénarios de transfert à travers l’utilisation de nos trois jeux de données. Nous montrons qu’il est possible d’effectuer un transfert de connaissance à partir de données provenant de dispositifs expérimentaux différents, de patients de types de diabète différents, mais aussi à partir de patients virtuels.Enfin, nous nous intéressons à l’amélioration de l’interprétabilité des modèles profonds à travers le principe d’attention. En particulier, nous explorons l’utilisation d’un modèle profond et interprétable pour la prédiction de la glycémie. Celui-ci implémente un double mécanisme d’attention lui permettant d’estimer la contribution de chaque variable en entrée au modèle à la prédiction finale. Nous montrons empiriquement l’intérêt d’un tel modèle pour la prédiction de glycémie en analysant son comportement dans le calcul de ses prédictions.
Type de document :
Thèse
Liste complète des métadonnées

https://tel.archives-ouvertes.fr/tel-03164608
Contributeur : Abes Star :  Contact Connectez-vous pour contacter le contributeur
Soumis le : mercredi 10 mars 2021 - 09:42:12
Dernière modification le : mercredi 5 mai 2021 - 03:41:00
Archivage à long terme le : : vendredi 11 juin 2021 - 18:20:23

Fichier

90985_DE_BOIS_2020_archivage.p...
Version validée par le jury (STAR)

Identifiants

  • HAL Id : tel-03164608, version 1

Citation

Maxime de Bois. Apprentissage profond sous contraintes biomédicales pour la prédiction de la glycémie future de patients diabétiques. Intelligence artificielle [cs.AI]. Université Paris-Saclay, 2020. Français. ⟨NNT : 2020UPASG065⟩. ⟨tel-03164608⟩

Partager

Métriques

Consultations de la notice

141

Téléchargements de fichiers

159