A finite elements method to solve the Bloch–Torrey equation applied to diffusion magnetic resonance imaging - Centre de mathématiques appliquées (CMAP) Accéder directement au contenu
Article Dans Une Revue Journal of Computational Physics Année : 2014

A finite elements method to solve the Bloch–Torrey equation applied to diffusion magnetic resonance imaging

Résumé

The complex transverse water proton magnetization subject to diffusion-encoding magnetic field gradient pulses in a heterogeneous medium can be modeled by the multiple compartment Bloch-Torrey partial differential equation (PDE). In addition, steady-state Laplace PDEs can be formulated to produce the homogenized diffusion tensor that describes the diffusion characteristics of the medium in the long time limit. In spatial domains that model biological tissues at the cellular level, these two types of PDEs have to be completed with permeability conditions on the cellular interfaces. To solve these PDEs, we implemented a finite elements method that allows jumps in the solution at the cell interfaces by using double nodes. Using a transformation of the Bloch-Torrey PDE we reduced oscillations in the searched-for solution and simplified the implementation of the boundary conditions. The spatial discretization was then coupled to the adaptive explict Runge-Kutta-Chebychev time-stepping method. Our proposed method is second order accurate in space and second order accurate in time. We implemented this method on the FEniCS C++ platform and show time and spatial convergence results. Finally, this method is applied to study some relevant questions in diffusion MRI.
Fichier principal
Vignette du fichier
main.pdf (1.86 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01111047 , version 1 (29-01-2015)

Identifiants

Citer

Dang Van Nguyen, Jing-Rebecca Li, Denis S Grebenkov, Denis Le Bihan. A finite elements method to solve the Bloch–Torrey equation applied to diffusion magnetic resonance imaging. Journal of Computational Physics, 2014, pp.283-302. ⟨10.1016/j.jcp.2014.01.009⟩. ⟨hal-01111047⟩
199 Consultations
492 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More