Skip to Main content Skip to Navigation
Journal articles

A physicist’s guide to explicit summation formulas involving zeros of Bessel functions and related spectral sums

Abstract : In this pedagogical review, we summarize the mathematical basis and practical hints for the explicit analytical computation of spectral sums that involve the eigenvalues of the Laplace operator in simple domains such as [Formula: see text]-dimensional balls (with [Formula: see text]), an annulus, a spherical shell, right circular cylinders, rectangles and rectangular cuboids. Such sums appear as spectral expansions of heat kernels, survival probabilities, first-passage time densities, and reaction rates in many diffusion-oriented applications. As the eigenvalues are determined by zeros of an appropriate linear combination of a Bessel function and its derivative, there are powerful analytical tools for computing such spectral sums. We discuss three main strategies: representations of meromorphic functions as sums of partial fractions, Fourier–Bessel and Dini series, and direct evaluation of the Laplace-transformed heat kernels. The major emphasis is put on a pedagogic introduction, the practical aspects of these strategies, their advantages and limitations. The review gathers many summation formulas for spectral sums that are dispersed in the literature.
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-03375473
Contributor : Denis Grebenkov Connect in order to contact the contributor
Submitted on : Tuesday, October 12, 2021 - 5:55:17 PM
Last modification on : Wednesday, October 13, 2021 - 3:39:23 AM

File

1904.11190v4.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Denis Grebenkov. A physicist’s guide to explicit summation formulas involving zeros of Bessel functions and related spectral sums. Reviews in Mathematical Physics, World Scientific Publishing, 2021, 33 (03), pp.2130002. ⟨10.1142/S0129055X21300028⟩. ⟨hal-03375473⟩

Share

Metrics

Record views

78

Files downloads

54