Using Cross-System Diversity in Heterogeneous Networks: Throughput Optimization
Samson Lasaulce, Alberto Suarez, Raul de la Cerda Nieto, Merouane Debbah

To cite this version:

HAL Id: hal-00326357
https://hal-supelec.archives-ouvertes.fr/hal-00326357

Submitted on 2 Oct 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Using Cross-System Diversity in Heterogeneous Networks: Throughput Optimization

Samson Lasaulcea, Alberto Suárezb, Raul de Lacerdab, Mérouane Debbahc

aLab. des Signaux et Systèmes, CNRS - SUPELEC - Univ. Paris Sud, 91190, Gif-sur-Yvette, France
bDpt. Communications Mobiles, Institut Eurecom, 06904, Sophia Antipolis, France
cChaire Alcatel-Lucent, SUPELEC, 91190, Gif-sur-Yvette, France

Abstract

This paper investigates the situation where a group of terminals can be simultaneously connected to several base stations using distinct technologies on non-overlapping frequency bands. We introduce and solve the problem of optimal power allocation (in the sense of the ergodic sum-rate) for the terminals in the uplink, using three types of receivers: the optimum receiver, minimum mean square error and matched filters. Key results from random matrix theory allow us to solve the corresponding optimization problems. Simulations validate our approach and illustrate the performance gain obtained by using several technologies simultaneously instead of one at a time.

Key words: Heterogeneous networks, cross-system diversity, soft handover, power allocation, random matrix theory, multiple access channel, CDMA, MIMO, OFDM.

1 Introduction

As the number of wireless systems has increased over the last two decades, the idea of system convergence has been introduced (see e.g. [19,28]) in order to

\textit{Email addresses: lasaulce@lss.supelec.fr (Samson Lasaulce), alberto.suarez-real@eurecom.fr (Alberto Suárez), raul.de-lacerda@eurecom.fr (Raul de Lacerda), merouane.debbah@supelec.fr (Mérouane Debbah).}
enable mobile terminals to operate with different standards. This convergence idea was one of the driving forces behind the design of reconfigurable terminals, also known as software defined radio, flexible radio [18] or cognitive radio in the context of intelligent terminals [10]. Mobile phones currently available on the market are multi-mode, which means that they can work with different standards. In Europe for example, mobile phones typically have both the GSM, GPRS and/or UMTS-FDD standards implemented and sometimes even the 802.11a/b/g standards via the unlicensed mobile access (UMA) technology (see e.g. [12]). In addition, there are many other situations where a terminal can have access to several signals that are in different, non-overlapping frequency bands. Here are a few examples: a GSM mobile station is able to listen to several GSM base stations; a UMTS user equipment can listen to WCDMA base stations but also possibly TD-CDMA base stations; a DVB-H mobile terminal can operate in the 3G or the DVB standard. In all these examples the terminal operates with only one standard at a time, depending on the user location and/or the type of service (Internet, TV, voice,...) requested by the user.

Although the present work is clearly based on an information-theoretic approach, it still provides elements to understand the aforementioned situations and give some ideas of what could be done to optimize the overall uplink network throughput, by using all the systems simultaneously [17] instead of sequentially (hard handover or best base station selection) as it is the case in existing systems or contributions [9,32]. This will provide an additional form of diversity at the terminals, which could be named cross-system diversity. More specifically, we consider several mobile users and base stations, each of the latter using a particular frequency band and radio access technology. We assume that the base stations are connected through perfect communication links. For instance, in UMTS networks, the base stations are connected through a radio network controller and very reliable wired connection (e.g. optic fiber), which is not far from a perfect communication link. Users have wireless links towards the different base stations and we want to derive the optimal power and rate allocations, given a fixed power constraint for each user. The uplink power allocation (PA) scheme is optimized in order to maximize the sum-rate (over the users and systems) of the overall network.

There exist many works on how to optimally allocate the transmit power to the different sub-channels. To our knowledge, reference [16] is the closest work to the one presented here. The authors address the problem of jointly allocating power and sub-carriers in the context of orthogonal frequency division multiple access (OFDMA) systems. Our work differs from theirs on several points: we consider a more general channel model (fading channels instead of Gaussian channels), a very different context (heterogeneous networks), all the sub-channels are used whereas in [16], only a subset of them is used by each transmitter and also the optimization problem of [16] is not convex, in contrast
with the PA problem for the optimum receiver investigated in this paper. In addition, our main goal is to optimize a global performance criterion under local power constraints. Finally, our information theoretic approach exploits asymptotic random matrix theory [11,29] in order to provide tractable expressions for the optimization problems under investigation. Hence, we will assume the dimensions of the systems as well as the number of users large enough, in order to benefit from the self-averaging properties of the matrices under consideration. In particular, an interesting feature of these self-averaging properties shows that only the parameters of interest to the problem (system load, signal to noise ratio,...) are kept whereas all irrelevant parameters disappear [25,20,26,13]. This provides a neat analysis framework for multi-dimensional problems. Moreover, although the results are proved in the asymptotic regime, it turns out (due to fast convergence properties) that they are accurate even for rather small systems (see e.g. [2,6,7,23]).

This paper is structured as follows. Sec. 2 provides the signal model used to study the cross-system problem under investigation. In Sec. 3, we consider the case where the receiver is equipped with the information theoretic optimum decoder 1. In order to gain insight into the overall sum-capacity maximization problem we start by studying the simplest scenario (Sec. 3): one single user, two one-dimensional base stations with equal bandwidths and the different links assumed to be static. In Sec. 4, the sum-capacity achieving power allocation policy is provided in a general framework: arbitrary numbers of users, base station dimensions, systems bandwidths and fading channels with transmit and receive correlations. As a second step we investigate more realistic receiver structures in terms of complexity, namely the minimum mean square error (MMSE) receiver and the matched filter (MF), optimizing the overall system sum-rate achieved when the base stations use these receivers. Simulations are provided in Sec. 5 to assess the gain provided by the proposed approach and possible extensions of this work are given in Sec. 6.

Notations: in this paper, the notations s, v, M stand for scalar, vector and matrix respectively. Capital letters are used to denote index upper bounds. The superscripts (.)^T and (.)^H denote transpose and transpose conjugate, respectively. The trace of the matrix M is denoted by Tr(M). The mathematical expectation operator is denoted by E(.). The notation N(v,M) stands for the complex multi-dimensional Gaussian random variable with mean v and covariance M. Finally, the notation (.)^+ denotes the function max (0, .).

1 The optimum receiver would be implemented by a maximum likelihood (ML) decoder. However, in order to prove coding theorems, joint typicality-based decoders are generally assumed, because they can be shown to be optimum for infinite sizes of codeword.
The global system under investigation is represented in Fig. 1. It consists of \(K \) mobile terminals and \(S \) base stations using non-overlapping frequency bands (in Fig. 1, \(S = 3 \)). Each mobile terminal has one single antenna, while the base station can possibly have multiple antennas depending on the radio technology. The number of dimensions associated with base station \(s \in \{1, ..., S\} \) is denoted by \(N_s \). For example, if a CDMA system is used, \(N_s \) represents the spreading factor; on the other hand, if the base station is equipped with multiple antennas, \(N_s \) represents the number of receive antennas. Assuming time selective but frequency non-selective channels, the equivalent baseband signals received by the base stations can be written as

\[
\begin{align*}
 y_1(\tau) &= \sqrt{\rho_1} \sum_{\ell=1}^{K} h_{\ell,1}(\tau) x_{\ell,1}(\tau) + z_1(\tau) \\
 y_2(\tau) &= \sqrt{\rho_2} \sum_{\ell=1}^{K} h_{\ell,2}(\tau) x_{\ell,2}(\tau) + z_2(\tau) \\
 & \vdots \\
 y_S(\tau) &= \sqrt{\rho_S} \sum_{\ell=1}^{K} h_{\ell,S}(\tau) x_{\ell,S}(\tau) + z_S(\tau)
\end{align*}
\]

where \(\forall k \in \{1, ..., K\}, \forall s \in \{1, ..., S\} \), \(x_{k,s}(\tau) \) is the signal transmitted by user \(k \) to base station \(s \) at time \(\tau \), satisfying \(\sum_{s=1}^{S} \mathbb{E}|x_{k,s}|^2 \leq 1 \). \(h_{k,s}(\tau) \) is the \(N_s \)-dimensional stationary and zero-mean ergodic complex Gaussian channel vector associated with user \(k \) for the system \(s \), \(z_s(\tau) \) is an \(N_s \)-dimensional complex white Gaussian noise distributed as \(\mathcal{N}(0, n_0 B_s I) \), where \(n_0 \) is the receive noise.

\[2\] The present information theoretic analysis can be directly extended to multipath channels (channels with memory). One can show that, provided that the maximum channel memory is negligible w.r.t. the size of the codewords used, the only difference is that one has to work in the frequency domain [15].
noise power spectral density, B_s the bandwidth of system s, ρ_s is the signal-to-noise ratio (SNR) in system s, defined as $\rho_s = \frac{P}{\sigma^2_0 B_s}$, and P is the transmit power available at a given terminal. For simplicity and clarity, we henceforth implicitly assume that the mobile terminals have the same transmit power, which is a reasonable assumption (see e.g. [27] for more information). Otherwise, the case with distinct transmit powers could be easily taken into account. For simplicity we will omit the time index τ from our notations. In our analysis the flat fading channel vectors of the different links can possibly vary from symbol vector (or space-time codeword) to symbol vector (or space-time codeword). We assume that the receivers (base stations) know their channel matrices (coherent communication assumption) and send the channel distribution information (CDI) through reliable links to a central controller. Knowing the channels of all users, the central controller implements the algorithm and indicates to each user how he has to share his transmit power between the different links. The transmitters therefore do not need any knowledge on the channels (neither channel state nor distribution information).

As we will consider the overall system sum-rate as the performance criterion, and assume a large system in terms of both the number of users and dimensions at the base stations (N_1, \ldots, N_S), it is convenient to rewrite the received signal in matrix form:

$$
\begin{align*}
&y_1 = \sqrt{\rho_1} H_1 x_1 + z_1 \\
&y_2 = \sqrt{\rho_2} H_2 x_2 + z_2 \\
&\vdots \\
&y_S = \sqrt{\rho_S} H_S x_S + z_S
\end{align*}
$$

where $\forall s \in \{1, \ldots, S\}$, $H_s = [h_{1,s}, \ldots, h_{K,s}]$ and $x_s = (x_{1,s}, \ldots, x_{K,s})^T$. We assume that the channel matrix of a given system can be factorized, in the sense of the Hadamard product, as a product of two matrices

$$
H_s = G_s \odot W_s,
$$

where W_s is the matrix of the instantaneous channel gains which are assumed to be i.i.d zero-mean and unit variance, and G_s is the pattern mask specific to a given technology, containing the arbitrary variances of the elements of H_s. This model is broad enough to incorporate several radio access technologies. Here are three typical examples:

- **MIMO systems**: N_s represents the number of antennas at the base station s and K the number of users (each equipped with a single antenna). The matrices W_s and G_s are respectively an i.i.d. zero mean Gaussian matrix and a $N_t \times K$ correlation matrix. The Kronecker model [1,3,21] is very used to model MIMO channels. It assumes that the channel transfer matrix can be factorized as $H_s = R_s^T \Theta_s T_s^2$, where the matrices T_s and R_s respectively
account for the possible correlation effects at the transmitter and receiver. What is important to note is that in this context \(g_s(i, j) = \sqrt{d_{i,s}^{(R)} d_{j,s}^{(T)}} \), where \(d_{i,s}^{(R)} \) are the eigenvalues of the correlation matrix \(R_s \) at the receiver and \(d_{j,s}^{(T)} \) are the eigenvalues of the correlation/path loss matrix at the transmitter \(T_s \).

- Flat fading CDMA systems: \(N_s \) represents the spreading factor and \(K \) the number of users. For a block fading channel, \(W_s \) and \(G_s \) are respectively the code matrix, where each column represents the code of a given user, and the channel gains matrix, where the columns are identical (due to the fact that we consider flat fading models);
- OFDM systems: \(N_s \) represents the number of sub-carriers and \(K \) the number of users. Assuming for simplicity an OFDMA system where each user uses one subcarrier, \(W_s \) and \(G_s \) are respectively an i.i.d. zero mean Gaussian matrix and the truncated identity matrix (as the channel matrices are not necessarily square). Note that if \(K < N_s \), some sub-carriers are not used.

3 Maximizing the Sum-Rate in the Simplest Scenario

Here, we consider the simplest scenario with 1 user and 1 dimension at each of the 2 base stations. The two frequency bands used by each of the cells are denoted by \(B_1 \) and \(B_2 \). For simplicity we assume that \(B_1 = B_2 = \frac{B}{2} \). The scalar channels are assumed to be fixed here. This case is very simple but captures some important features of the problem. The system of equations associated with the received signals is:

\[
\begin{align*}
y_1 &= \sqrt{\rho_1} \left| h_1 \right|^2 x_1 + z_1 \\
y_2 &= \sqrt{\rho_2} \left| h_2 \right|^2 x_2 + z_2.
\end{align*}
\]

The power fractions allocated to bands 1 and 2 are respectively denoted by \(P_1 = \alpha \) and \(P_2 = (1 - \alpha) \), with \(\alpha \in [0, 1] \). We also introduce \(\theta_1 \) and \(\theta_2 \) defined by: \(\theta_1 = \frac{|h_1|^2}{\sigma^2} \) and \(\theta_2 = \frac{|h_2|^2}{\sigma^2} \), where \(\sigma^2 = \frac{n_0 B}{2} \). The system sum-capacity can then be written as:

\[
C = \frac{B}{2} \max_{\alpha \in [0, 1]} \left\{ \log_2 \left(1 + \theta_1 \alpha \right) + \log_2 \left[1 + \theta_2 (1 - \alpha) \right] \right\}
= \frac{B}{2} \max_{\alpha \in [0, 1]} \log_2 \left\{ 1 + \theta_2 + [\theta_1 - \theta_2 + \theta_1 \theta_2] \alpha - \theta_1 \theta_2 \alpha^2 \right\}.
\]

The function \(\alpha \mapsto R(\alpha) \) is strictly concave and its maximum is reached for:
\[
\alpha^* = \frac{1}{2} + \frac{1}{2} \left(\frac{1}{\theta_2} - \frac{1}{\theta_1} \right) \quad \text{whenever it belongs to } [0, 1]. \tag{6}
\]

The power fraction allocated to system 1 is merely linear in the difference between the reciprocal of the receive signal-to-noise ratios associated with each of the systems. Three operating regimes can be distinguished:

- when \(\theta_1 \leq \frac{\theta_2}{1+\theta_2} \): \(\alpha^* = 0 \); as we did not impose the function \(R(\alpha) \) to meet the transmit power constraint, \(\alpha^* = 0 \) translates the water-filling solution, when all the power has to be allocated to the dominant link (link 2 here), into the well known hard handover or best base station selection strategy. Symmetrically, when \(\theta_2 \leq \frac{\theta_1}{1+\theta_1} \): \(\alpha^* = 1 \);
- when \(\theta_1 = \theta_2 \) then the optimal solution is the uniform power allocation.
- for the other (non-negative) values for the pairs \((\theta_1, \theta_2) \) there generally exists a strictly better power allocation policy than the uniform PA and hard handover schemes.

4 Large Systems Scenario Analysis

In this section, we consider a much more realistic scenario for wireless communications. The different links between transmitters and receivers are now block fading and the numbers of users, systems and base station dimensions can be arbitrarily selected. Additionally, the base stations can have different bandwidths \(B_1, ..., B_S \). The numbers of users and dimensions have to be large enough in order to make our asymptotic analysis sufficiently accurate. More precisely, we consider a scenario where \(K \to +\infty, \forall s \in \{1, ..., S\}, N_s \to +\infty \) with \(\lim_{K \to \infty, N_s \to \infty} \frac{K}{N_s} = c_s \) and \(0 < c_s < +\infty \). However, it is now well-known that many asymptotic results from random matrix theory under the large system assumption apply for relatively small systems \([2, 6, 7]\).

Under these assumptions our main objective is to derive the best power allocation scheme in the sense of the sum-rate of the global system for different types of receivers. One can notice that the selected performance criterion is global whereas the power constraints are local, which is a key difference with the conventional power sharing problem between different subchannels.

4.1 Optimum Receiver

When the optimum receiver is assumed at the base stations, maximizing the sum-rate leads to the Shannon sum-capacity of the global system. Considering
the sum-rate point of the system, instead of an arbitrary operating point of
the capacity region, has the advantage of simplifying the technical problem. In
particular, considering the sum-rate as the performance criterion allows us to
exploit some results obtained for single-user fading MIMO (e.g. [26]). Note that
the considered system consists of several orthogonal multiple access channels
(MAC) with multi-dimensional receivers and single-dimensional transmitters,
under the assumption that CSIR but no CDIT (CDI at the transmitter) is
available. The sum-rate of each MAC is simply a special case of the general
case analyzed by [30,31] for Rayleigh MIMO multiple access channels with
input correlation with CSIR and CDIT (CDI at the transmitter). In our case
where the dimension of the signal transmitted by a terminal is one, the CDIT
assumption amounts for a user to knowing its transmit power. By considering
the system of (orthogonal) equations (2) the network ergodic sum-capacity
per user can be expressed as:

$$C = \max_{Q_1,\ldots,Q_S} \mathbb{E}\left[\frac{1}{K} \left(\sum_{s=1}^{S} B_s \log_2 \left| I + \rho_s H_s Q_s H_s^H \right| \right) \right]$$

(7)

where \(\forall s \in \{1,\ldots,S\}, \ Q_s = \mathbb{E}(x_s x_s^H) \). As long as the signals transmitted
by the different users are independent, the matrices \(Q_s \) are diagonal: \(Q_s = \text{Diag}(\alpha_{1,s},\ldots,\alpha_{K,s}) \), where \(\alpha_{k,s} \) denotes the fraction of its power user \(k \)
employs in system \(s \). As the mobile terminals have identical transmit power, we
have \(\forall k \in \{1,\ldots,K\}, \ \sum_{s=1}^{S} \alpha_{k,s} = 1 \).

So far, we have not assumed anything about the numbers of users and base
station dimensions. From now on, in order to simplify the optimization
problem associated with equation (7) we will assume the asymptotic regime, as
defined in the beginning of this section. Interestingly, in that case, an explicit equivalent for the network sum-rate can be obtained (from [11], see also
[33]), whatever the pattern mask \(G_s \), as long as its continuous power profile,
defined for \((\tau,\tau') \in [0,1]^2 \) as \(p_{N_s}(\tau,\tau') = g_s(i,j) \) with \(\frac{i-1}{N_s} \leq \tau \leq \frac{i}{N_s} \) and
\(\frac{j-1}{N_s K} \leq \tau' \leq \frac{j}{N_s K} \), converges uniformly to a bounded and piecewise continuous
function as \(N_s \to \infty \) [11], corollary 10.1.2 in [34]. However, if the pattern mask
is not structured at all, the expression of the large system equivalent can be
quite complicated and not always easy to exploit, whereas it is simpler for the
class of separable channels (e.g. CDMA and MIMO channels). This is why we
will mainly focus on this class of channels while having in mind that the proposed
framework can be extended to other technologies. Note that the OFDM
case needs a separate treatment since the power profile \(p_{N_s} \) does not converge
uniformly. However, it is not difficult to see that one can obtain the same
capacity expression as in the separable case [24–26,20,13] with classical tech-
niques. Therefore, for at least the three aforementioned types of technologies
the constrained optimization under consideration can be simplified by finding a certain approximation \(\tilde{C} \) of \(C \), which can be obtained by exploiting the
original results of [11,29] which have been applied by [24–26,20,13] to fading single-user vector channels. This is stated through the following proposition.

Proposition 4.1 (Equivalent of the network sum-rate) An equivalent of (7) in the asymptotic regime, i.e. when \(K \to +\infty \), \(\forall s \in \{1,\ldots,S\} \), \(N_s \to +\infty \) with \(\lim_{K \to \infty, N_s \to \infty} K N_s = c_s \) and \(0 < c_s < +\infty \), is:

\[
\tilde{C} = \max_{\alpha_1,\ldots,\alpha_K} \frac{1}{K} \left[\sum_{s=1}^{S} \sum_{\ell=1}^{K} B_s \log_2 (1 + \gamma_{\ell,s} \alpha_{\ell,s} r_s) + \sum_{s=1}^{S} \sum_{j=1}^{N_s} B_s \log_2 (1 + \beta_{j,s} q_s)
- \sum_{s=1}^{S} B_s v_s q_s \log_2 e - \sum_{\ell=1}^{K} \lambda_\ell \left(\sum_{s=1}^{S} \alpha_{\ell,s} - 1 \right) \right] \quad (8)
\]

where \(\forall \ell \in \{1,\ldots,K\} \), \(\lambda_\ell \) is the Lagrange multiplier associated with the power constraint of user \(\ell \), guaranteeing that the sum of power fractions over the different systems equals one. The expression of \(v_s \) depends on the technology used by system \(s \): \(v_s = K \rho_s \) if \(s \) denotes the index of a MIMO system; \(v_s = \frac{K}{N_s} \rho_s \) if \(s \) denotes the index of a CDMA system. In both cases the parameters \(\{(q_s, r_s)\}_{s \in \{1,\ldots,S\}} \) are determined as the unique solution of the following system of equations:

\[
\begin{cases}
 r_s = \frac{1}{Kv_s} \sum_{j=1}^{N_s} \frac{\beta_{j,s}}{1 + \beta_{j,s} q_s} \\
 q_s = \frac{1}{Kv_s} \sum_{\ell=1}^{K} \frac{\gamma_{\ell,s} \alpha_{\ell,s}}{1 + \gamma_{\ell,s} \alpha_{\ell,s} r_s}
\end{cases}
\quad (9)
\]

\(H_s = R_s^{\frac{1}{2}} \Theta_s T_s^{\frac{1}{2}} \), \(\Theta_s \) is a matrix with i.i.d entries with unit-variance, \(\gamma_{\ell,s} = v_s d^{(T)}_{\ell,s} \), \(d^{(T)}_{\ell,s} \) is the \(\ell \)th eigenvalue of \(T_s \), \(\beta_{j,s} = v_s d^{(R)}_{j,s} \), \(d^{(R)}_{j,s} \) is the \(j \)th eigenvalue of \(R_s \). For the OFDM case, equation (8) holds with \(r_s = \rho_s \), \(q_s = 0 \) and \(\gamma_{\ell,s} = g^2_s(\ell, l) \).

The proof directly follows from [25,26] since in our case the channels are also separable. In order to better understand and interpret the provided result and make this paper self contained, we provide a special case drawn from [24]: a single MIMO system with SNR \(\rho \), \(K \) inputs, \(N \) outputs and neither transmit nor receive correlation. The approximate capacity per receive antenna can be written in this case: \(\tilde{C} = \frac{1}{K} \sum_{\ell=1}^{K} \log_2 \left[1 + \rho \alpha(i) r \right] + \log_2 \left(\frac{N}{K} r \right) - \frac{N}{K} \left(\frac{N}{K} - r \right) \log_2 e \) where \(r \) is determined through the following fixed point equation

\[
\begin{cases}
 r = \frac{N}{K} \frac{1}{1 + \rho q} \\
 q = \frac{1}{K} \sum_{i=1}^{K} \frac{\alpha(i)}{1 + \rho \alpha(i) r}
\end{cases}
\quad (10)
\]

Therefore we see that the large system approximation roughly allows to transform the exact capacity expression of the fast fading MIMO system into a sum.
of individual capacities similarly to a parallel set of Gaussian sub-channels. Now let us go back to the general case. In order to find the optimum power allocation scheme we need to derivate the argument of the maximum in equation (8), which we refer to as \(R(\alpha_1,\ldots,\alpha_K) \). Obviously for all \(s \in \{1,\ldots,S\} \), \(r_s \) and \(q_s \) are functions of the parameters to be optimized i.e. \(\alpha_{1,s},\ldots,\alpha_{K,s} \). It turns out that the partial derivative with respect to \(\alpha_{k,s} \) is the same as it would be if \(r_s \) and \(q_s \) were assumed to be independent of this parameter, which is the purpose of the following lemma.

Lemma 4.2 (Property of the equivalent of the network sum-rate)

For all \((k,s) \in \{1,\ldots,K\} \times \{1,\ldots,S\}\), the derivative of the sum-rate approximation \(\tilde{R}(\alpha_1,\ldots,\alpha_K) \) with respect to \(\alpha_{k,s} \) is the same as that obtained when assuming \(r_s \) and \(q_s \) to be independent of \(\alpha_{k,s} \).

This key property is proved in Appendix A. This property of the large dimension equivalent of the sum-rate is instrumental in the determination of the optimum PA policy because it considerably simplifies the optimization procedure and allows us to cope with the convergence issue of \(r_s \) and \(q_s \) towards strict constants as the numbers of users and dimensions grow. Based on this argument, the fact that \((\alpha_1,\ldots,\alpha_K) \mapsto \tilde{R}(\alpha_1,\ldots,\alpha_K)\) is a strictly concave function (its Hessian is strictly positive) and using the notation \(B_s = b_s \times B \) (where \(B = B_1 + \cdots + B_S \)) in order to use dimensionless quantities, one can show that the optimum power fractions are given by the following proposition.

Proposition 4.3 (Power allocation for the optimum receiver) In the asymptotic regime, the optimum power fraction of user \(k \) in system \(s \) is:

\[
\alpha_{k,s}^* = \left[\frac{b_s}{\sum_{t \in S_k^+} b_t \left(1 + \sum_{t \in S_k^+} \frac{1}{\gamma_{k,t} r_t} \right) - \frac{1}{\gamma_{k,s} r_s} } \right]^+, \tag{11}
\]

where for each user \(k \) the set \(S_k^+ \) represents the systems/sub-channels which receive a non-zero power; \(|S_k^+| \leq S \) by definition. User \(k \) will allocate power to system \(s \) if and only if the quantity \(\frac{b_s}{\lambda_k \ln 2} - \frac{1}{\gamma_{k,s} r_s} \) is strictly positive.

We see that, thanks to the large system assumption, the analysis of the general system under consideration (with fading and arbitrary numbers of users and base station dimensions) leads to a solution similar to that obtained for the elementary system of eq. (6) where the channels were assumed to be static. Indeed, we also have a water-filling equation for the optimum power allocation scheme, which is due to the averaging effect induced by the large system assumption. Let us give one special case of equation (11): the case where the base stations have the same bandwidth (e.g. UMTS-FDD + UMTS-TDD base stations):
\[
\alpha_{k,s}^* = \left[\frac{1}{|S_k^+|} + \frac{1}{|S_k^+|} \sum_{t \in S_k^+} \frac{1}{\gamma_{k,t}r_t} - \frac{1}{\gamma_{k,s,r_s}} \right]^+.
\tag{12}
\]

Here can be seen even more clearly, in eq. (12), that the obtained result can be linked to the water-filling power allocation derived for the elementary scenario (eq. (6)): the optimum power fraction comprises a term corresponding to the uniform PA \((i.e. \text{the term } \frac{1}{|S_k^+|}) \) plus a term that characterizes the difference of quality between the system under consideration \(\left(\frac{1}{\gamma_{k,s,r_s}} \right) \) and the average of all the systems \(\left(\frac{1}{|S_k^+|} \sum_{t \in S_k^+} \frac{1}{\gamma_{k,t}r_t} \right) \).

The capacity of the system under consideration is achieved if and only if all the water-filling equations (eq. 11) are verified simultaneously. This is obviously the case by construction of the derivation of the water-filling equations and the convexity of the optimization region. The main issue to be mentioned now is the way of implementing the proposed power allocation scheme. We propose an iterative algorithm to implement the optimal power allocation policy:

1. Initialization: assume a uniform power allocation scheme \(i.e. \forall (k, s) \in \{1, ..., K\} \times \{1, ..., S\}, \alpha_{k,s} = \frac{1}{S} \).
2. Compute the corresponding value for \(r_s \) by using the fixed-point method: the first equation of system (9) can be written in the form: \(r_s = f_s(r_s) \).
3. Iterate the procedure while the desired accuracy on the power fractions is not reached.
 - For users \(k \in \{1, ..., K\} \):
 - Update the power fractions by using the water-filling equation (11).
 - Update the value of \(r_s \).

A similar algorithm has been recently used by \([7,8]\) in order to derive the capacity of single-user Rician MIMO channels with antenna correlation. Based on the results of \([7][8]\) one is ensured that the approximated ergodic mutual information is a strictly concave function of the transmit power fractions \(\{\alpha_1, ..., \alpha_K\} \) and if the iterative power allocation algorithm converges, then it converges towards the global maximum. At each step of the iterative procedure, the total sum-rate of the system is therefore increasing and generally (all the simulations performed in \([7,8]\) and this paper confirmed this point) converges to a limit. At the limit, all power fractions will verify the water-filling equations. As already mentioned, the system sum-capacity would be achieved by using a maximum likelihood receiver at all the base stations. More pragmatically we now turn our attention to sub-optimum receiver structures, which can be implemented more easily in real systems. One of the questions we want to answer is whether the optimal PA, in terms of the network sum-rate, for other types of receivers can also be expressed through a simple water-filling equation.
4.2 MMSE Receiver

The MMSE receiver is known to be the best linear multi-user receiver in terms of signal-to-interference plus noise ratio (SINR). In our context, the MMSE receiver at base station \(s \in \{1, \ldots, S\} \) for user \(k \in \{1, \ldots, K\} \) can be written as:

\[
\mathbf{w}_{k,s}^H = \mathbf{h}_{k,s}^H \left(\sum_{\ell=1}^{K} \alpha_{\ell,s} \mathbf{h}_{\ell}^H + \sigma^2 \mathbf{I} \right)^{-1},
\]

and the SINR is given by:

\[
\eta^{(\text{mmse})}_{k,s} = \alpha_{k,s} \mathbf{h}_{k,s}^H \left(\sum_{\ell=1, \ell \neq k}^{K} \alpha_{\ell,s} \mathbf{h}_{\ell}^H + \sigma^2 \mathbf{I} \right)^{-1} \mathbf{h}_{k,s}.
\]

In order to express the sum-rate achieved by the overall system when the MMSE receiver is used at the base stations, one just needs to determine the SINR at the input of each MMSE receiver. It turns out that each of these SINRs converges to a limit and is especially easy to express in the large dimensions regime (see e.g. [4,23]). Let \(\tilde{\eta}^{(\text{mmse})}_{\ell,s} \) be the asymptotic SINR for user \(\ell \) in the output of the MMSE receiver at base station \(s \). The achievable approximate ergodic sum-rate is then given by:

\[
\tilde{R}^{(\text{mmse})}_{\text{sum}} = E \left[\sum_{s=1}^{S} \sum_{\ell=1}^{K} \log_2 \left(1 + \frac{\tilde{\eta}^{(\text{mmse})}_{\ell,s}}{\tilde{R}^{(\text{mmse})}_{k,s}} \right) \right].
\]

The asymptotic SINR expression in the MMSE output can be shown to be (see e.g. [22,23]):

\[
\forall \ell \in \{1, \ldots, K\}, \quad \tilde{\eta}^{(\text{mmse})}_{\ell,s} = \frac{\alpha_{\ell,s} N_s}{N_s} \sum_{i=1}^{N_s} \frac{g_s^2(i, \ell)}{\sigma^2 + \frac{1}{N_s} \sum_{j \neq \ell}^{K} \frac{\alpha_{j,s} g_s^2(i, j)}{1 + \tilde{\eta}^{(\text{mmse})}_{j,s}}}. \]

To find the amount of power user \(k \) has to allocate to system \(s \) one needs to derivate the sum-rate (eq. (15)) w.r.t. \(\alpha_{k,s} \). Unlike the asymptotic sum-rate achieved by the optimum receiver, the asymptotic sum-rate achieved by using the MMSE receiver is not always a concave function of \((\alpha_1, \ldots, \alpha_K) \). In order to obtain an analytical solution (otherwise an exhaustive numerical optimization of the sum-rate can always be performed) and avoid using possibly computationally demanding numerical optimization techniques, we propose to approximate the asymptotic sum-rate by a concave function by introducing the two approximations (given below). This leads to the following proposition.
Proposition 4.4 (Optimum power allocation for the MMSE receiver)

Assume that

\[(1) \quad \tilde{\eta}_{k,s}^{(mmse)} = a_{k,s}^{(mmse)} \times \alpha_{k,s} \quad \text{with} \quad \frac{\partial a_{k,s}^{(mmse)}}{\partial \alpha_{k,s}} = 0;\]

\[\frac{\partial \tilde{R}_{k,s}^{(mmse)}}{\partial \alpha_{k,s}} \gg \sum_{\ell \neq k} \frac{\partial \tilde{R}_{k,s}^{(mmse)}}{\partial \alpha_{k,s}}.\]

In the asymptotic regime, the optimum power fraction of user \(k\) in system \(s\) is:

\[\alpha_{k,s}^{(mmse)} = \left[\omega_{k} - \frac{1}{a_{k,s}^{(mmse)}}\right]^+ \quad (17)\]

where \(\omega_{k} \triangleq \frac{1}{\lambda_{k} \ln 2}\) is the water-level for user \(k\) and

\[a_{k,s}^{(mmse)} \triangleq \frac{1}{N_{s}} \sum_{i=1}^{N_{s}} \sigma^{2} + \frac{1}{N_{s}} \sum_{j \neq k}^{K} \frac{\alpha_{j,s} g_{s}^{2}(i,j)}{1 + \tilde{\eta}_{j,s}^{(mmse)}}. \quad (18)\]

Proof By setting the derivative of the constrained asymptotic sum-rate to zero, one directly obtains that:

\[
\frac{\partial}{\partial \alpha_{k,s}} \left[\tilde{R}_{sum}^{(mmse)} - \sum_{\ell \neq k}^{K} \lambda_{\ell} \left(\sum_{s=1}^{S} \alpha_{\ell,s} - P \right) \right] = 0 \quad (19)
\]

\[\Leftrightarrow \quad \frac{1}{\ln 2} \left(\frac{\partial \tilde{R}_{k,s}^{(mmse)}}{\partial \alpha_{k,s}} \right) - \lambda_{k} = 0.
\]

The validity of assumptions (1) and (2) is discussed in Appendix B and will also be commented in the simulation part. The first assumption is actually exactly verified in the finite case and we would also like its large system equivalent to have this property. The second assumption is motivated by the fact that in a many user network the behavior of a single user should have almost no impact on the SINR of another user of this network. Mathematically, as the proof above shows, the motivations for assuming (1) and (2) is that the optimization problem becomes very similar to the one investigated for the optimum receiver. Therefore, like the optimum receiver, the approximate optimum power allocation policy is given by a simple water-filling equation.

4.3 Matched Filter

Now we go a step further in decreasing the receiver complexity. We assume a matched filter at all the base stations. The MF for user \(k\) at base station \(s\)
The signal at the MF output is expressed as
\[h_k^H s \cdot \mathbf{x} = |h_k^H| s \mathbf{x}_{k,s}^2 + \sum_{\ell \neq k} h_k^H h_{\ell,s} x_{\ell,s} + h_k^H z_{k,s}, \] (20)
and the corresponding SINR follows:
\[\eta_{k,s}^{(mf)} = \frac{|h_k^H|^4 \alpha_{k,s}}{\sigma^2 |h_{k,s}|^2 + \sum_{\ell \neq k} \alpha_{\ell,s} |h_k^H h_{\ell,s}|^2}. \] (21)

In the asymptotic regime the SINR becomes (see e.g. [22,23])
\[\hat{\eta}_{k,s}^{(mf)} = \frac{\alpha_{k,s} \left(\sum_{i=1}^{N_s} g_s^2(i, k) \right)^2}{\sigma^2 N_s \sum_{i=1}^{N_s} g_s^2(i, k) + \sum_{\ell \neq k} \alpha_{\ell,s} \sum_{i=1}^{N_s} g_s^2(i, k) g_s^2(i, \ell)}. \] (22)

The asymptotic system sum-rate achieved by using the MF at the reception is:
\[\tilde{R}_{\text{sum}}^{(mf)} = \mathbb{E} \left[\sum_{s=1}^{S} \sum_{\ell=1}^{K} \log_2 \left(1 + \hat{\eta}_{k,s}^{(mf)} \right) \right]. \] (23)

The optimum power allocation for the matched filter is then given by the following proposition.

Proposition 4.5 (Optimum power allocation for the MF) Assume that
\[\left| \frac{\partial \tilde{R}_{\text{sum}}^{(mmse)}}{\partial \alpha_{k,s}} \right| >> \left| \sum_{\ell \neq k} \frac{\partial \tilde{R}_{\text{sum}}^{(mmse)}}{\partial \alpha_{k,s}} \right|. \] In the asymptotic regime, the optimum power fraction of user \(k \) in system \(s \) is:
\[\alpha_{k,s}^{(mf)} = \left[\omega_k - \frac{1}{\alpha_{k,s}^{(mf)}} \right]^+, \] (24)
where
\[\alpha_{k,s}^{(mf)} = \frac{\left(\sum_{i=1}^{N_s} g_s^2(i, k) \right)^2}{\sigma^2 N_s \sum_{i=1}^{N_s} g_s^2(i, k) + \sum_{\ell \neq k} \alpha_{\ell,s} \sum_{i=1}^{N_s} g_s^2(i, k) g_s^2(i, \ell)}, \] (25)
and \(\omega_k = \frac{1}{\lambda_k \ln 2} \) is the water-level for user \(k \).

Proof A quick look at the sum-rate expression shows that the situation is similar to that encountered with the MMSE receiver. The only difference is that one does not need to introduce assumption (1) since the SINR \(\eta_{k,s}^{(mf)} \) is always proportional to \(\alpha_{k,s} \), whatever the dimensions of the system. The stated result follows.
5 Simulation example

In all the simulations the following channel model will be assumed. The entries of \(W_s \) will be chosen to be i.i.d. with zero-mean and variance 1. For the CDMA case, the entries of \(G \) will be generated according to a Rayleigh distribution with variance 1, with independent columns and all the elements in each of them equal, corresponding to flat fading, and for MIMO a matrix of ones (no correlation). First we assume the optimum receiver at the base stations. We want to evaluate the performance gain brought by exploiting the available cross-system diversity, in comparison with the standard power allocation scheme (hard handover). For this, let us assume the following typical simulation setup in a cellular system: 50 active users \((K = 50) \) and 4 CDMA base stations \((S = 4) \) with different spreading factors \(((N_1, N_2, N_3, N_4) = (4, 8, 16, 32)) \).

Fig. B.1 shows that for medium and high SNRs the performance loss induced by using only one technology at a time can be very significant, greater than 4 dB typically, which means that the mobile transmit power could be divided by a factor greater than 2 w.r.t. to the conventional strategy. On the other hand, for low SNRs, the hard handover solution performs better than the uniform PA, which shows the potential interest in implementing the optimum PA, which provides the best performance whatever the SNR. Also, in contrast to single-user MIMO systems, it can be seen that the gap in performance between uniform and optimum PA schemes does not shrink as the SNR increases. This observation has also been made in other simulation scenarios. Figure B.2 shows a scenario with the same parameters as the one just analyzed but now both CDMA and MIMO systems are considered, obtaining relatively similar results. In all the tested scenarios the convergence of the proposed iterative power allocation algorithm was obtained after at most 10 iterations; note that the algorithm is said to have converged if the optimum power fractions are determined with an accuracy of \(10^{-4} \).

Now we assume the simplest receiver at the base stations, namely the matched filter. There are two base stations and two users. The BS are equipped with multiple antennas: \(N_1 = 2, N_2 = 4 \). Fig. B.3 shows the network sum-rate achieved by using the MF for four different PA schemes: the optimum PA obtained by an exhaustive numerical search, the approximate PA obtained by assuming the two hypotheses stated in Sec. 4.2 and 4.3, the uniform PA scheme and the hard handover. First, the figure shows that the corresponding approximation of the sum-rate is not very good but it still provides a performance gain over the other PA schemes. Second, this simulation confirms that the uniform PA becomes more and more suboptimal w.r.t. to the exact optimum PA as the SNR increases. Third, we clearly see that handover based PA suffers from a significant performance loss for medium and high SNRs. To sum up, we can say that, as a rule of thumb, the uniform PA can always be used and will provide significant gains with the advantage of being very simple
to implement (no feedback mechanism required in particular).

The last figure, *i.e.* Fig. B.4 sums up the network performance for the three receivers investigated in this paper in the typical scenario $K = 20, S = 3, (N_1, N_2, N_3) = (4, 8, 32)$. It allows one to better evaluate the benefits from using the optimum receiver over the MMSE receiver and MF. A typical information that can be drawn from this figure is as follows: by simply using a MMSE receiver with uniform PA instead of the MF with hard handover (as used in current networks) a huge performance gain could be obtained by exploiting the available cross-system diversity. Of course, this comment holds for medium and high SNRs. If the network is also likely to operate in the low SNR regime, the optimum PA should be used or a SNR-based switching mechanism between the hard handover and uniform PA could be introduced.

6 Conclusions

In this contribution, a cross-system power allocation algorithm has been provided in the context of MIMO, CDMA and OFDM technologies in order to exploit the available cross-system diversity. Interestingly, in the asymptotic regime, a radio access technology can be characterized, from the information-theoretic point of view, by only a few parameters. Indeed, the solution for all the receivers turns out to be dependent only on a limited number of parameters: the dimensions of the system, number of users, channel gains, path loss, noise variance and correlation at the transmitter and the receiver.

As a consequence, for the optimum receiver a simple cross-layer algorithm, analogous to the water-filling algorithm, can be implemented at the central controller to schedule the powers of all the users in order to maximize the network capacity, and this can be done in a simple, iterative way, which generally converges to the optimum.

For the MF and MMSE receivers a water-filling solution can still be obtained by introducing two additional assumptions, which simplify the optimization problem but at the price of a performance loss that has to be evaluated in the situations of interest. For the typical scenarios considered in this paper, we saw that they were reasonable. The potential performance gain of cross-system diversity was shown to be important in several typical simulation setups. For instance, by simply using MMSE receivers at the base stations and uniform PA over the different systems, the mobile transmit power could be divided by a factor greater than 10 with respect to a standard network using the MF and hard handover PA scheme.

The proposed work could be extended by considering the outage probability
in order to further analyze the benefits of cross-system diversity, which will allow one to complete our comparisons between the hard handover, uniform and optimum PA schemes. It would also be interesting to study a more heterogeneous network, for instance by introducing CDMA base stations with multiple antennas and exploiting the results derived by [14]. As mentioned in this paper, more technologies can be considered since the condition on the pattern mask matrices G_s are mild and the strong results of [11] can be directly applied in the proposed framework.

To conclude this paper, the authors want to stress the fact that our approach is (information) theoretical and aims at giving insights to researchers and network designers on a quite difficult problem. Obviously, many issues would need to be addressed to implement the proposed power allocation schemes. The way of coordinating base stations using different technologies is just one example of this kind of issues.

References

[27] UMTS World Association
http://www.umtsworld.com/technology/technology.htm

A Proof of Lemma 4.2

We want to derivate the argument of the maximum in equation (8) with respect to $\alpha_{k,s}$. First note from the system of equations (9) that r_t and q_t do not depend on $\alpha_{k,s}$ for all $t \neq s$. Based on this observation one just needs to consider the following auxiliary function:

$$
\phi(\alpha_{k,s}) = \log_2 \left\{ \prod_{\ell=1}^{K} \left[1 + \gamma_{\ell, s} \alpha_{\ell, s} r(\alpha_k) \right] \times \prod_{j=1}^{N} \left(1 + \rho d_j^2 q(\alpha_{k,s}) \right) \times e^{-K \rho r(\alpha_{k,s}) q(\alpha_{k,s})} \right\}
$$

where we dropped the system index s and receiver subscript (R) for sake of clarity.

Define $u \triangleq \prod_{\ell=1}^{K} \left[1 + \gamma_{\ell, s} \alpha_{\ell, s} r(\alpha_k) \right]$ and $v \triangleq \prod_{j=1}^{N} \left(1 + \rho d_j^2 q(\alpha_{k,s}) \right) \times e^{-K \rho r(\alpha_{k,s}) q(\alpha_{k,s})}$.

With these notations:

$$
\frac{\partial \phi(\alpha_{k,s})}{\partial \alpha_{k,s}} = \frac{1}{\ln 2} \frac{1}{uv} \frac{\partial uv}{\partial \alpha_{k,s}}.
$$

(A.2)

It turns out that $\frac{\partial (uv)}{\partial \alpha_k} = uv \times \frac{\gamma_k r}{1 + \gamma_k \alpha_{k,s} r}$. This is what we want to show.

We want to derivate the function u w.r.t. $\alpha_{k,s}$. As u is a product of functions u_ℓ, i.e. $u = \prod_{\ell=1}^{K} u_\ell$, its derivative u' can be written as $u' = u \times \sum_{\ell=1}^{K} \frac{u'_\ell}{u_\ell}$ where

$$
u'_\ell = \begin{cases}
\gamma_{\ell, s} \alpha_{\ell, s} r' & \text{if } \ell \neq k \\
\gamma_k (r + \alpha_{k,s} r') & \text{if } \ell = k.
\end{cases}
$$

(A.3)

Using a similar reasoning for v one can check that

$$
v' = v \times \left[\sum_{j=1}^{N} \frac{\rho d_j^2 q'}{1 + \rho d_j^2 q} - K \rho (q' r + q r') \right].
$$

(A.4)

Now using the relations proved in the previous steps we have that

$$
\frac{\partial (uv)}{\partial \alpha_{k,s}} = uv \times \left(\sum_{\ell=1}^{K} \frac{u'_\ell}{1 + \gamma_{\ell, s} \alpha_{\ell, s} r} + \sum_{j=1}^{N} \frac{\rho d_j^2 q'}{1 + \rho d_j^2 q} - K \rho (q' r + q r') \right)
$$

(A.5)

with ψ expanding as
\[
\psi = \sum_{\ell \neq k} \frac{\gamma_{\ell} \alpha_{\ell,s} r'}{1 + \gamma_{\ell} \alpha_{\ell,s} r} + \frac{\gamma_k (r + \alpha_{k,s} r')} {1 + \gamma_k \alpha_{k,s} r} + \sum_{j=1}^{N} \frac{\rho d_j^2 q'} {1 + \rho d_j^2 q} - K \rho (q' r + q r'). \tag{A.6}
\]

(A.7)

Now by observing that
\[
\begin{align*}
\sum_{\ell \neq k} \frac{\gamma_{\ell} \alpha_{\ell,s} r'} {1 + \gamma_{\ell} \alpha_{\ell,s} r} &= (K \rho q - \frac{\gamma_k \alpha_k} {1 + \gamma_k \alpha_{k,s} r'}) r' \\
\sum_{j=1}^{N} \frac{\rho d_j^2 q'} {1 + \rho d_j^2 q} &= K \rho q r
\end{align*}
\]

(A.8)

we find that
\[
\psi = \frac{\gamma_k r} {1 + \gamma_k \alpha_{k,s} r}, \tag{A.9}
\]

which concludes the proof.

B Approximating the asymptotic system sum-rate by a concave function

B.1 The case of the MMSE receiver

For the user of interest (i.e. user \(k\)):

\[
\frac{\partial \tilde{\eta}_{k,s}^{(mmse)}} {\partial \alpha_{k,s}} = \frac{1} {N_s} \sum_{i=1}^{N_s} \left\{ \frac{g_s^2(i, k)} {\sigma^2 + \frac{1} {N_s} \sum_{j \neq k}^{K} \frac{\alpha_{j,s} g_s^2(i, j)} {1 + \tilde{\eta}_{j,s}^{(mmse)}}} \times \left[\sigma^2 + \frac{1} {N_s} \sum_{j \neq k}^{K} \frac{\alpha_{j,s} g_s^2(i, j)} {1 + \tilde{\eta}_{j,s}^{(mmse)}} \left(1 + \alpha_{k,s} \frac{\partial \tilde{\eta}_{j,s}^{(mmse)}} {\partial \alpha_{k,s}} \frac{1} {1 + \tilde{\eta}_{j,s}^{(mmse)}} \right) \right] \right\} \tag{B.1}
\]

For all \(\ell \neq k\),

\[
\frac{\partial \tilde{\eta}_{k,s}^{(mmse)}} {\partial \alpha_{k,s}} = -\frac{\alpha_{\ell,s}} {N_s} \frac{1} {N_s} \sum_{i=1}^{N_s} \left\{ g_s^2(i, \ell) \times \right. \left[\frac{1} {N_s} \frac{g_s^2(i, k)} {1 + \tilde{\eta}_{k,s}^{(mmse)}} + \frac{1} {N_s} \sum_{j \neq \ell} \alpha_{j,s} g_s^2(i, j) \left(-\frac{\partial \tilde{\eta}_{j,s}^{(mmse)}} {\partial \alpha_{j,s}} \right) \frac{1} {1 + \tilde{\eta}_{j,s}^{(mmse)}} \right] \left[\sigma^2 + \frac{1} {N_s} \sum_{j \neq \ell} \frac{\alpha_{j,s} g_s^2(i, j)} {1 + \tilde{\eta}_{j,s}^{(mmse)}} \right]^2 \right\} \tag{B.2}
\]
Let $|\tilde{\eta}_M'|$ and g_M be the maxima of $\left|\frac{\partial \tilde{\eta}_{\ell,s}^{(\text{mmse})}}{\partial \alpha_{k,s}}\right|$ and $g_s(i, \ell)$ over all the triplets (i, ℓ, s). By definition $\left|\frac{\partial \tilde{\eta}_{\ell,s}^{(\text{mmse})}}{\partial \alpha_{k,s}}\right| \leq |\tilde{\eta}_{M}'|$. In fact, under reasonable assumptions, one can tighten this bound, this is the purpose of what follows. The main point is to assume that the entries $g_s(i, j)$ take finite values and do not vanish. Note that for MIMO systems the entries of the mask matrix $g_s(i, j)$ are effectively bounded and they do not scale with N_s. However, for CDMA and OFDM systems this is not true since for both case they represent the realizations of the channel impulse. As a Rayleigh distribution is assumed for the channel gains, they are not bounded mathematically. However, many works applying random matrix theory (see e.g. [5]) assume that the channel has a compact support. In practice, for physical reasons, the channel gains do not strictly vanish and stay effectively in a finite interval and therefore the proposed assumption makes sense.

For all (k, s) in $\{1, ..., K\} \times \{1, ..., S\}$ one can easily check that

$$
\left|\frac{\partial \tilde{\eta}_{\ell,s}^{(\text{mmse})}}{\partial \alpha_{k,s}}\right| \leq \frac{\alpha_{\ell}}{N_s} \sum_{i=1}^{N_s} \frac{g_s^2(i, \ell)}{g_s^2(i, j)} \frac{\alpha_j}{(1 + \tilde{\eta}_{j,s}^{(\text{mmse})})^2} \left|\frac{\partial \tilde{\eta}_{j,s}^{(\text{mmse})}}{\partial \alpha_{k,s}}\right| \times \frac{1}{\sigma^4}(B.3)
$$

$$
\leq \frac{1}{N_s^2} \sum_{i=1}^{N_s} \sum_{j \neq \ell} \left|\frac{\partial \tilde{\eta}_{j,s}^{(\text{mmse})}}{\partial \alpha_{k,s}}\right| (B.4)
$$

$$
\leq \left(\frac{g_M}{\sigma}\right)^4 \frac{K}{N} |\tilde{\eta}_M'|. (B.5)
$$

Therefore we see that a sufficient condition for the MMSE output SINR of user ℓ to be considered as independent of the power allocation of user $k \neq \ell$ is that the ratio K/N has to be small. Under this sufficient but not necessary condition the approximate SINR $\tilde{\eta}_{k,s}$ can be considered to be proportional to $\alpha_{k,s}$ (Assumption (1)). For the second assumption to hold a sufficient but stronger condition is that the quantity $\frac{K^2}{N}$ is small. We therefore see that the validity of the proposed assumptions depends on the scenario under consideration.

B.2 The case of the matched filter

First, note that Assumption (1) is exactly verified both in the finite and large dimensions settings. So, here we focus on the validity of Assumption (2). In a given system s, we have

$$
\frac{\partial \tilde{R}_s^{(mf)}}{\partial \alpha_{k,s}} = \frac{\partial}{\partial \alpha_{k,s}} \sum_{\ell=1}^{K} \log_2 \left(1 + \tilde{\eta}_{\ell,s}^{(mf)}\right) = \frac{1}{\ln 2} \sum_{\ell=1}^{K} \frac{\partial \tilde{\eta}_{\ell,s}^{(mf)}}{\partial \alpha_{k,s}} \frac{1}{1 + \tilde{\eta}_{\ell,s}^{(mf)}} (B.6)
$$
with
\[
\begin{aligned}
\frac{\partial \tilde{\eta}^{(mf)}_{k,s}}{\partial \alpha_{k,s}} &= \frac{\partial \eta^{(mf)}_{k,s}}{\alpha_{k,s}} \\
\frac{\partial \tilde{\eta}^{(mf)}_{k,s}}{\partial \alpha_{k,s}} &= -\frac{\partial \eta^{(mf)}_{k,s}}{\alpha_{k,s}} \\
\frac{\sum_{i=1}^{N_s} g^2_s(i, k) g^2_s(i, \ell)}{\sigma^2 N_s \sum_{i=1}^{N_s} g^2_s(i, \ell) + \sum_{j \neq \ell} \alpha_{j,s} \sum_{i=1}^{N_s} g^2_s(i, \ell) g^2_s(i, j)} & \text{for all } \ell \neq k.
\end{aligned}
\]

Define \(g^2_M = \max_{(\ell, s, i)} g^2_s(i, \ell) \) and \(g^2_m = \min_{(\ell, s, i)} g^2_s(i, \ell) \) and upper bound the quantity of interest that is

\[
\left| \sum_{\ell \neq k} \frac{\partial \tilde{R}_{\ell,s}}{\partial \alpha_{k,s}} \right| = \left| \frac{1}{\ln 2} \sum_{\ell=1}^{K} \left| \frac{\partial \tilde{\eta}^{(mf)}_{\ell,s}}{\partial \alpha_{k,s}} \right| \frac{1}{1 + \tilde{\eta}^{(mf)}_{\ell,s}} \right| \leq \frac{1}{\ln 2} \sum_{\ell \neq k} \left| \frac{\partial \tilde{\eta}^{(mf)}_{\ell,s}}{\partial \alpha_{k,s}} \right| \leq \frac{1}{\ln 2} \sum_{\ell \neq k} \frac{\tilde{\eta}^{(mf)}_{\ell,s}}{\tilde{\eta}^{(mf)}_{\ell,s}} \frac{\sum_{i=1}^{N_s} g^2_s(i, k) g^2_s(i, \ell)}{\sigma^2 N_s \sum_{i=1}^{N_s} g^2_s(i, \ell)} \leq \frac{1}{\ln 2} \sum_{\ell \neq k} \frac{\tilde{\eta}^{(mf)}_{\ell,s}}{\tilde{\eta}^{(mf)}_{\ell,s}} \frac{N_s g^4_M}{\sigma^2 N_s \sum_{i=1}^{N_s} g^2_s(i, \ell)}. \]

At this point we have to distinguish between MIMO systems on the one hand and CDMA and OFDM systems on the other hand. For MIMO systems we know that \(\sum_{i=1}^{N_s} g^2_s(i, \ell) \geq N_s g^2_m \) where \(g_m \) is finite and different from zero. For CDMA and OFDM systems, as the channel realizations are into play, we exploit the central limit theorem, which allows us to write \(\sum_{i=1}^{N_s} g^2_s(i, \ell) = N_s \left(\mu + o \left(\frac{1}{\sqrt{N_s}} \right) \right) \) where \(\mu \) is the average energy of the channel gain (assumed to be normalized to one). In any case, the sum of interest can be bounded by \(\text{const.} \times \frac{K}{N_s} \), which gives us a sufficient condition in order for Assumption 2 to hold for the matched filter.
Fig. B.1. Optimal receiver. Performance gains brought by cross-system diversity (CDMA systems).

Fig. B.2. Optimal receiver. Performance gains brought by cross-system diversity (CDMA and MIMO systems).
Fig. B.3. MF performance for the optimum PA, approximate optimum PA, uniform PA and hard handover PA.
Fig. B.4. Optimum receiver vs MMSE receiver vs MF
Cover Letter

“Using Cross-System Diversity in Heterogeneous Networks: Throughput Optimization”

S. Lasaulce, A. Suárez, R. De Lacerda and M. Debbah
lasaulce@lss.supelec.fr, alberto.suarez-real@eurecom.fr, raul.de-lacerda@eurecom.fr, merouane.debbah@supelec.fr

I. REVIEWER 1

R Now my concern with that paper is its complexity to read. I would appreciate if the authors would present their main analytical results in Propositions or Theorems. Indeed, re-reading the paper, the main results and contribution are not easy to find. I therefore suggest that a Proposition or Theorem be added to each subsection of Section 4, with a rigorous formulation and followed by a physical interpretation.

A The new version of the paper follows this recommendation: the paper comprises 4 propositions and 1 lemma. All the results are commented and interpreted either in the paper body or in the appendices.

R “I also remarked two remaining typos: - Section 4: arbitrary selected ⇒ arbitrarily selected - Section 5: according a Rayleigh... ⇒ according to a Rayleigh”.

A Done.

II. REVIEWER 2

R The paper is much better written now. Regarding my previous points the authors added 2 important references. However, I believe it is important to add also the following, because, in my view, half of the paper is based on the analysis of eqs. 8-9 in the setting of multiple systems. These equations have been used in the MIMO literature extensively. I add here a few more relevant ones that should be cited:

A The new version of the paper mentions these 3 references [13][20][26] in the Introduction and in Sec. 4 between Eq. (7) and (8).

III. REVIEWER 3

R I still think that the paper is significantly removed from reality. The authors make numerous trivializing assumptions which do not reflect implementation of current wireless networks. For instance, assuming that each base station uses a different frequency band, base stations of different technologies are connected, etc. are far fetched assumptions. Since the paper is information theoretic in its approach, I suppose this is acceptable. However, the authors should tone down their claims about the applicability of their results to real networks – significant work needs to be done in that direction.

A We now insist more on the fact that our approach is information theoretic and mention to the reader that some work needs to be done towards implementation of analyze real networks. This is done in all the “strategic places”:

• Abstract: although the severe space limitation we added the expression “in the sense of the ergodic sum-rate” in the sentence “We introduce and solve the problem of optimal power allocation in the sense of the ergodic sum-rate)...”. This expression better explains the chosen point of view.
• Introduction: we emphasized the expression -information-theoretic- in the sentence “Although the present work is clearly based on an information-theoretic approach”, 2nd paragraph of Sec 1. Later on, in the 3rd paragraph of Sec 1, we added the expression -information theoretic- in the sentence “Finally, our information theoretic approach...”.
• Conclusion: at the end, we added a small paragraph to better explain the way we tackled the issues addressed in this paper: “To conclude this paper, the authors want to stress on the fact that our approach is (information) theoretical and aims at giving insights to researchers and network designers on a quite difficult problem. Obviously, many issues would need to be addressed to implement the proposed power allocation schemes. The way of coordinating
base stations using different technologies is just one example of this kind of issues.”

R The signal model is still not fully clear to me. Do the channel gains $h_{k,s}$ have unit variance? Are you assuming equal received power for all users or equal transmit power? I don’t think that equal transmit power for all users is a valid assumption, contrary to what the authors claim. The reference you have provided to substantiate this claim is rather vague.

A In theory, the elements of G can have arbitrary entries, as long as in the asymptotic case the continuous power profile converges uniformly to some limit. For the simulations, the elements of G have been chosen with variance 1 in the CDMA case (identically 1 in the MIMO case), which given that W has i.i.d elements of variance $1/N_s$ implies that the $h_{k,s}$ have variance $1/N_s$. This is typically the case for MIMO and CDMA systems and has been clarified in the paper “For the CDMA case, the entries of G will be generated according to a Rayleigh distribution with variance 1, with independent columns and all the elements in each of them equal, corresponding to flat fading, and for MIMO a matrix of ones (no correlation).” This framework has already been treated in a different setting by one of the authors in [33], using the results of Girko [11]. Regarding the equal transmit power assumption for all the mobiles, in practice, due to electromagnatic compatibility regulations, they are actually the same for the same technology. However, path loss can be taken into account through the variance of the pattern mask G.

R The α^* computed in (6) is not linear in the difference of SNR’s...it is linear in the difference of the inverse of SNRs.

A Eq. (6) has been modified accordingly. We have also modified the corresponding comment.

R Is the result on page 8 (where you assume uniform convergence of the power profile) your result, or is it borrowed from somewhere? The explanation in that part of the paper is not very clear.

A The assumption of uniform convergence of the power profile is due to Girko in [11]. It can also be found in [34] as corollary 10.1.2. We have clearly added the reference of the corollary in the paper.

R Are you assuming CSIR or CDIT or both? Please make your assumptions precise. The MAC capacity with CSIR (no CDIT is known) when the base station has a single antenna. Is it known when there are multiple antennas at the receiver?

A This point is now much clearer.

- In Sec 2: “We assume that the receivers (base stations) know their channel matrices (coherent
communication assumption) and send the channel distribution information (CDI) through reliable links to a central controller. Knowing the channels of all users, the central controller implements the algorithm and indicates to each user how he has to share its transmit power between the different links. The transmitters therefore do not need any knowledge on the channels (neither channel state nor distribution information)."

• In Sec 4.1: “Note that the considered system consists of several orthogonal multiple access channels (MAC) with multi-dimensional receivers and single-dimensional transmitters, under the assumption that CSIR but no CDIT (CDI at the transmitter) is available. The sum-rate of each MAC is simply a special case of the general case analyzed by [30], [31] for Rayleigh MIMO multiple access channels with input correlation with CSIR and CDIT (CDI at the transmitter). In our case, where the dimension of the signal transmitted by a terminal is one, the CDIT assumption amounts to each user knowing its transmit power.”

R Is your iterative procedure to compute \(r \) and alpha guaranteed to converge? How many iterations are typically needed for convergence?

A This point was already mentioned in the paper in Sec 4.1: “Based on the results of [7][8] one is ensured that the approximated ergodic mutual information is a strictly concave function of the transmit power fractions \(\{\alpha_1, \ldots, \alpha_K\} \) and if the iterative power allocation algorithm converges, then it converges towards the global maximum. At each step of the iterative procedure, the total sum-rate of the system is therefore increasing and generally (all the simulations performed in [7], [8] and this paper confirmed this point) converges to a limit.”

In the Simulation section, Sec 5, we also added the sentence: “In all the tested scenarios the convergence of the proposed iterative power allocation algorithm was obtained after at most 10 iterations; note that the algorithm is said to have converged if the optimum power fractions are determined with an accuracy of \(10^{-4} \).”

R In Fig B.4, MF + uniform PA outperforms MF + proposed PA. This seems to contradict the results in Fig. B.3. Explain.

A This results from the fact that in Fig. B.3, where only 2 users are assumed, we look at a special case: for many channel realizations the best scheme will consist in assigning to each user a different base station (even for high SNR), thus obtaining an interference-free scenario. The objective of this simulation setup was to be able to obtain the optimal power allocation numerically, which would not be possible for complexity reasons otherwise, and
compared it with the proposed one. Figure B.4 considers a more realistic scenario, in which the aforementioned situation cannot happen anymore, and the uniform power allocation can perform better at high SNR as the neglected terms become more important. Therefore the observed result is due to the approximation made.

R Does the iterative PA algorithm converge to uniform PA as the number of base stations increases? I am just curious.

A When more base stations are added to the system, the water-level of the waterfilling algorithm increases, since some of the new available channels are better (statistically) than some of those for which some power were allocated. As a result, in general, there would be no convergence to the uniform PA.

R “I am going to point out some of the typos/grammatical errors. I urge you to carefully review your manuscript and perhaps get it proofread by a native English speaker before resubmission. * Page 2: having a fixed power constraint → given a fixed power constraint
* Page 5, line 1: verifying → satisfying * Title of section 3: most simple → simplest * Page 8: to simplify → of simplifying * Page 9, line 4: approximate → approximation * Page 12: simply writes as → can simply be written as * Page 13: verified → simplified * Page 15: $N_1 = 2, N_4 = 4 \rightarrow N_1 = 2, N_2 = 4$”

A Done.

References

[27] UMTS World Association
http://www.umtsworld.com/technology/technology.htm

Communications, submitted.

publishation in IEEE Journal on Selected Areas in Communications, issue on “Game Theory in Communication Systems”,

Dr. Samson Lasaulce is Chargé de Recherche CNRS at Supélec (LSS). He is a former student from École Normale Supérieure and École Nationale Supérieure de Télécommunications. He has been working with Motorola Labs for three years (1999, 2000, 2001) and with France Télécom R&D for two years (2002, 2003). Since 2004, he has joined the CNRS and Supélec. Since 2004, he is also Chargé d’Enseignement at École Polytechnique. His broad interests lie in the areas of communications, signal processing and information theory with a special emphasis on game theory for wireless communications.

Alberto Suárez was born in Oviedo, Spain, in 1983. He did his telecommunication engineering studies in the Universidad de Oviedo. In 2006 he obtained the M.Sc degree in Digital Communications and Signal Processing from the Université de Nice, France. In October 2006 he joined the Mobile Communications department of Eurecom, Sophia Antipolis, France, where he is currently working towards the Ph.D degree. His research interests lie in the topics of wireless communications and information theory.

Prof. Mérouane Debbah was born in Madrid, Spain. He entered the Ecole Normale Supérieure de Cachan (France) in 1996 where he received the M.Sc and the Ph.D. degrees respectively in 1999 and 2002. From 1999 to 2002, he worked for Motorola Labs on Wireless Local Area Networks and prospective fourth generation systems. From 2002 until 2003, he was appointed Senior Researcher at the Vienna Research Center for Telecommunications (FTW) (Vienna, Austria) working on MIMO wireless channel modeling issues. From 2003 until 2007, he joined the Mobile Communications department of the Institute Eurecom (Sophia Antipolis, France) as an Assistant Professor. He is presently a Professor at Supelec (Gif-sur-Yvette, France), holder of the Alcatel-Lucent Chair on Flexible Radio. His research interests are in information theory, signal processing and wireless communications. Mérouane Debbah is the recipient of the 2007 Globecom best paper award as well as the Valuetools 2007 best student paper award.

Raul de Lacerda was born in 1981 in Fortaleza/Ceará, Brazil. He entered the Federal University of Ceará (UFC) in 1999 where he obtained the B.Sc. and M.Sc. telecom engineering degrees respectively in 2003 and 2005. In 2004, he went to France, where he entered the University of Nice and obtained a second M.Sc degree (DEA SiCom/STIC - Signal and Digital Communications). Since October 2005, he has been with the Mobile Departament at Eurecom under the supervision of Prof. Mérouane Debbah/Supelec and Prof. João C.M. Mota/UFC.