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Abstract

Ontline s=nsor monitoringallows detecting anomalies in sensor operation and reconstructing the csigeals of
failed sensordy exploiting the information coming from other aseired signals. In field applications, the numbie
signals to be monitored ften too large to be handledfectively by a single reconstruction modél. more viable
approach is that of decomposing the problem by construatmgmber of reconstructianodels each one handling an
individual group of signalsTo apply this approach, two problems must be solved: 1) the optimal definition of the
groups of signals and 2) the appropriate combinaticghedutcomesof the individual modelswith respect tahe first
problem, n this work Multi-Objective Genetic Algorithms (MOGASs) are devised for findthg optimal groups of
signalsused for buildingreconstruction models based on Principal Component Analysis (RU&).respect to the
second problem, weighted scheme is adopteddombineappropriately the signal predictions of thelividual models.
The proposedapproach is applietb a real casstudy concerning the reconstructioh 84 signals collected from a
Swedishnuclearboiling waterreactor

1. Introduction

During plant operation, sensors may experience anomatidgonvey inaccurate or misleading information on the
actual plant state to the automated controls and the operators. Hence, it is important to develop accurate and robust
systems capablof detecting such anomalies and correctly reconstructing the signals of the failed sensors.

Online sensormonitoring allows detecting the degradation in the instrument performance; upon such detection,
recalibration can be initiated. This way of prodegdbased on the monitored health condition of the instrumentation
bearsimportant economi@dvantagesasthe current quest for increased competitiveness by dilsinies requires
streamliningall plant operationsand reducing system downtimi general benefits of thisprocedureinclude the
redudion of unnecessary maintenance amtreasedconfidence in the actual values of the monitored parametéts
important consequences system operation, production and accident management [1, 2].

The purposef this work is to provide a robust tatique forreconstrudng faulty signals.In many field applications,
the number of measured signals is too large to belddreffectively with one singleeconstructiormodel [2-5]. A
viable approach to address tligsueof signal dimensionalittamounts to subdividing the set of signals into smaller
overlapping groups, developing a reconstruction model for each group of signals and then cceplpiropgatelythe
outcomes of the modewithin an ensemble approad&{] (Figure 1).

4 )

4 )

Group 1 |— = » Model 1
Signal Group 2 |‘ - *Model 2 Ensemble | | Combined
Sensors [ . - = 3 e
grouping : P e of models Results
Group K|— = »Model K
- J N J

Figure 1. Thanulti-groupensembleapproach tesignal reconstruction

A major motivationbehind theuse of an ensemble of modéss that reliance ondifferent modelsincreases the
robustness ofeconstruction By assigningappropriatepeformance indicator¢o the individual modelsand basing the
reconstruction on those models in the ensenitdiicated as best performingfor a robust reconstructiorfailed or de
calibrated signals can be effectively reconstructed.

Two issuesre central tahe ensemble approach feignal reconstructiarn(1) the partitioning of the signals into groups
and (2)the combination ofhe outcomes of thedividual models developedn the basis ahe groups.



In this work,the first issue is tacklely resortingto Multi-ObjectiveGenetic Algorithms IOGAs) [9-14]. The groups
thereby found arghen used as bases fatevelopng a corresponding number @éconstructionmodelsbased on
Principal Component Analysis (PCAJ5-19]. Regarding the second issuke butconesof the modelsare combined
by a waghtedcombination schemi® provide the ensembleconstructedignalvalues

The mper is organized as follows. Section 2 illustrates theGA@ased methodbr signal grouping The ensemble
approach ighenpresentedn Section 3 and applied in Sectioricta real case study concerning theonstructiorof a

data set of 84 signals measured at a Swatlistear Biling Water Reactor located in Oskarshamn. Some conclusions
on the advantages and limitations of the prepgamethods are dren in the last Section.

2. Multi -Objective Genetic Algorithms for Signal Grouping

The problem of signal grouping is here framed as a Mfliiective Genetic AlgorithnfMOGA) optimization search
[10-14, 20, 2]. Formally, gven n 11 VHQVRUV ¥, ML JQ x®,\he aim of thdMOGA search is to group

them in K groupswith some required characteristiaad each one constituted byy)  n signals k «K . The

inclusion or not of a signal in a group can be encoded in terms of a binary variable which takes value 1 or O,
respectively.

The MOGA probabilistic search ihusperfamed on a population oK chromosomes, each one constitutedrbpits
representing all the signalin the generi& -th chromosome, codingignal group k, the i -th bit, 51", encodes the
presence (1) or absence (0) of ih¢h signal in thek -th group,i 1,2,..n, k 1,2,...K (Figure2).

n bits = n signals

0 1 0 1 1

i
. |1 85 =1 — Signal 2 included in &
s; =0 — Signal 1 not included in &

Figure2. The stucture of the generic-th chromosome

In general, m order to effectively group the signalsetobjective functions of the genetic search should captittethe

individual properties of the grougse., the mutual information conmteof the group signalsi| 5, 2]) and the global
properties related to the ensemble of groups (i.e., the diversity between the groups, the redundancy of the signals and
the inclusion of the majority of the signals in tpe@upsg[2, 3, 5]).

The MOGA optimizationdevised in this work consisbf a twoobjective genetic search which at convergence leads to
a final populationconstituted by groupshich maximiz the group signals correlation and ttdiversity betweerthe
groups in the population

The first obective function is intuitively motivated by the fact that the signals in the grargused to buildnodek for

their reonstructon and bythe conjecture thastrongly positively or negatively correlated signals are capable of
regressing one another. fact, the information content of strongly negatively correlated signals is also very high and
comparable to the one derived from strongly positively correlated sigitadsmeasurdereinused to quantify tbse
characteristicd V. WKH 3 HD UV RQeffivieft R2) 2BHCpDsWriRgQ measurements of two signaf, (t) and

fq®,t 12..N, WKH 3HDUVRQYTV FRHIILFLHQW LV GHILQHG DV
@

where f D Sfp , ?q and qu are the mean values and standard deviations of the sifpaind f , respectively.

By definition, the value ofcorr, , rangesfrom 1 to 1 and assumes the value @ffor statistically independent

guantities. Signals that have the same trend (both increasing or both decreasing with respect to the mean) will have

postive values ofcorr, ,, whereas those which vary in opposite ways will rencter , , negative.



To associate a degree of correlation to the genkerihv group of m, signals, k 1,2,...K, the average absolute
correlation of eachp-th signal, p 1,2,...,m , isfirst computed as the mean of the absolute values of the correlation
between thep-th and the remainingn, 1 signals viz.

1
<corrp> 1 |corrpvq| (2)
q1
qzp
Finally, the group correlatiom , computed as the geometric mean of the average correlations of tsegnals in the

group [24, is taken as fitsobjective function for the group optimization:

Ne M rTi<c0rrp> 3
p1l

This measure allows assigning a low correlation to those groups in which at least one signal has a low average
correlation with respa to the others in the gup [24.

As for the second objective function, the measure used to compute the diversity between thés dpasgxs on the
concept ofHamming distancd25, 26. According to the definition of the chromosorilkistrated in Figure 2to
computethe pairwig diversity measureliv; , between thej -th and h-th groupin the populationfirst the numbes of

different diff;,, and common signalsomy |, , betweerthe two groupgsrecomputed:
n .
dif y 1§ 9 (@)

|
i1

n
comy, 1 Gal) ®)
il

where s,j'h is 1 if thei -th signal is included in thg -th or h-th group respectively, and O viceversa ar@, (i) equals

1if the i -th bit of both the j -th and h-th group is equal to 1, i.e. if the two graupave thei -th signal in common
and 0 viceversa.

The pairwisediversity between thg -th and h-th grougs is computedased only on the signals effectively included in
the two group, viz:

diff,

m, m com,

div;

(6)

This measure is equal to 0 if two groups are constiteteattlyby the same signalg.e., diff;;, 0) and to 1 ifthe
groups have no signals in common

The groupdiversity, d, , betweerthe k -th groupandthe othersj 1,2,...K in the population idinally computed as
the average pairwise diversity:

K
d, —— : divj | 7

At the end of the s&ch, the final population is characterized Ky highly correlated andiverse groups of signals
these groups are used as basesdéwelopng a corresponding number of reconstruction Pié&ed modejsthese
models constitutéhe ensemble for reconstructitige signas, as illustraté in the following Section.



3. The Ensemble Approach to SignaReconstruction

The aim of theensemble approach is to ensure an accurate and robust reconstruction of theTdigregdproachis
sketched in Figure.3

@lidation set Xy 41, 1 signals, K grou@
)

Group &, m, signals
¥
Compute weights, wk, i=12,....m, k=k+1
v
Reconstruction of test signals

k=K2 no

yes
n signals reconstructed by X groups.
Group weights wk, i =12,...,m,
k=12....K
v

Signal i, K| groups including |

¥
Weighted combination of
groups predictions

Ensemble
reconstruction of 1 signals

Figure 3. Sketch of the ensemblgorithm for signalreconstruction

To integratethe signalpredictionsprovided by theK groupsa weighted combinatieachemehas been adoptedhis

way of combining the models outputs can be looked at &xt@msion to a regressigroblem of the Static Weighted
Voting (SWV) technique adopted alassification problemto combine the class assignments of the single classifiers
constituting the ensemb]27].

In this approacheach groupk is assignedm, weight, w,k , 1 1,2,..m, the i -th weight beingproportional to the
accuracyof the model developed with groug in reconstructing the -th signal The set X, of Ny, patterns
availableto vdidate the ensemble performanisefirst partitioned into a training seX;gy (made of Ny patterns)
and a test seiX;gr (made of Ng patterns) The famer is used to computie sets ofweights of theindividual

models whereas the latter is used to verify the enserpeldormance in theeconstructiontask To computethe
weights, the training set must be further partitioned into ecalted trairinduce setX;gy o (Made of Nrgy no

patternsjand an induce seX,\p (made of N\ patterns)as illustrated in Figurd. The weight vvik is proportional to

the error in reconstructinthe N, , induce patterns of thé-th signalmadeby the model trained on th& sy nD

patterns of the traimduce setThus, in the ensemble averagwre importancés givento the predictions of those
groupswhose corresponding models betteconstruct signai .

Validation set X,,,,
| Training set X o, | Testset X por |

| { l

IT rain-induce set X 51, non | Induce set X, |

| | l

Figure 4. Subdivision dhe validation set



Operatively, the weightfor thegenerick -th groupare obtained bfirst computingthe absoluteeconstruction errdior
each signal 1,2,...m, on the normalizeihducedatd, viz:

N
1 IND

/iLy I
Ninp tll

fi© 180 ®

where, fort 1,2,..Np. fi(t) is the real (normalized) value of theth signal and fi®(t) is the reconstruction
obtained by the PCA modblilt using the sigria of the k -th group andrained on theNzy o Patterns of the train
induce set.

The corresponding Weighmk .1 1,2,..m, is simply taken as the inverse of #ignalreconstruction error:
1
T 9)

Obviously,this measure allowassigningargeweights to thosegroups which povide the most accurateconstruction
of signali .

Once the weights are computed, thenericPCA modelbuilt usingthe m, signals of groupk is trainedon the Nz

patterns 6 the training set to provide inutput thepredictions fi®(t), t 1,2,..Npgr, 1 1L2,..m, of the Nygp
patterns of théest set

The ensemble reconstruction of tiNgg; patterrs of the generici -th signal, fFB(t) , 1 1,2,...Npg7, is thenobtained
by combining he predictions fi®(t) of the K; groups includingsignal i with the corresponding weightsvik,
k 1,2,..K:

Ko
R CA
Pn e
|
kll

(10)

Finally, to evaluate the ensemble performance, fivstabsolutesignal reconstruction errois computed according to
Eg. (8) using the ensemble signal predictions

1 Nrst

Nrst | Il

5

i 1) (11)
Then,the ensemblaccuracyis retainedas theaverage of thabsolute signal reconstruction errors:

(12

4. Application

The ensemble approadies beenapplied to a real case study concernimg84 signals collectedt a nuclear Boiling
Water Reactor (BWRIpcated in Oskarshamn, Sweden (Figbre

The MOGA codeusedfor the calculation®ias beemleveloped by the Laboratorio di Analisi di Segnale e di Analisi di
Rischio (LASAR,Laboratory of Analysis of Signals and Analysis of Risk) of the Department of Nuclear Engineering of

! In the application which follows, each signal of traidation dataset has been previously normalized in the range
[0.2,1].



the Polytechnic of Man (ttp:/lasar.cesnef.polimi)it The PCA code has been taken from
http://lib.stat.cmu.edu/multi/pcand adapted to perform the signal reconstruction tasks.
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Figureb. The process diagram of the nuclear power plant in Oskarshamn. The 84 signals are identified by an alpha
numeric code (e.g .$ . % HWF «

Thedata available for th84 signals have been sampled every 10 minutes from Ma&085 to January,2006 from a
corresponding number of sensors, providing a total amouritl 0f3008C time samplings. Each cerdinginstant t

provides an 84limensional patternf, (t), f,(t),...,fga(t) , t « N, identified by the values of the =84 signals at
the time instant , as illustrated in Table 1.

The total number of available patterns is divided into a MOGAGgEca Of Nyoga 1496€ samples used togpform
the genetic optimizatioand a validation seX,,,, of Ny, 15114 samples used twain and testhe PCA models and
to compute the ensemble restmuction performancg&qgs. 11 and 2).

Time samplingst 1,2,...N Signals i 1,2,..n

1 f; (1) fo(1) « fga(D)
Nyoca 1496€ «
14966
14967
Nya 15114 «
30080 f,(30080) | f,(30080;| « | fg,(30080)

Table 1. Partition ofhetotal data set fothe MOGA signal groupingandensemble signakconstruction

4.1 MOGA signal grouping

The results of théwo-objective MOGA searckiSection 2 carried out to find the optimalet ofgroups are illustrated
below. The MOGA settings heradoptedare reported in Table, &ith a synthetic explanation of the terms used.


http://lasar.cesnef.polimi.it/
http://lib.stat.cmu.edu/multi/pca

FIT-FIT: the population, rankrdered on the basis of the Pareto dominal
Selection criterion, is scanned and each individual is papeaited with an individual

of the nexfittest Pareto rank class

FITTEST:out of the four individuals (two parents and two chromosome
involved in the crossover procedure, the fittest two replace the parents
Mutation probability | 102

Population size 100

Number of generation 30000

Replacement

Table2. Main paraneters used for the MOGA seardfor further details on the HFIT selection procedure and the
FITTEST replacement procedure the interested reader may cfhsui}.

At convergence of the searck 100 highly correlated and diverse groups of signalake upthe final population
Figure 6 reportshe main features (correlation, diversity and size) ofdptmal groups of the final populatiomhe
groupscontainfrom 2 to 70 signals and are characterized werage by a good degree of diversity. The value of
diversity computed according to Eq. (7) is generally lower for small gravhish arenaturallythe most correlated [4].

In generalthe groups in the final population are characterized by different-ttisibetween the two objectives.

Group correlation, 7,
T T

i

1181118118 5 5 5191 8 9 01 R

0 10 20 30 40 50 60 70 80 90 100
Groups

Figure 6 Main features of theK 100 groupsof the final populatiorin asceding order with respect to theidize Each
group is identified by thealue of itscorrelationr, (Eq. 3) (top), diversityd, (Eq. 7) (middle) and sizen, (bottom).

As mentionedn Section 2, arnsemblepproach to signakconstructions effective only ifthe groups in the ensemble
are sufficiently diverse, they ensure a good signal redundancy and include the majority of the signal&igra]7
showsthat the maximization of diversigs objective functiohas led to fulfil both these global properties.
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Figure 7 Redundancy of each of the 84 signals (top) andorrespondinglistribution (bottom)

4.2 Ensemble signaleconstruction

Within the proposed ensemble weighted approach (Section 3), the signals &fdgtmips are used as bases for
develging a corresponding number of PCA reconstruction models, as illustrated in Figure 1.

The validation setX,,,, originally formed by N,,, 15114 patterns has been reduced kb, 1511 patterns by

samping one every tenNote that preliminary studies have shown that reducing the number of samples has negligible
effects on the values of the errors, while it considerably decreases the computational cost of validating the ensemble of
models.

The ensembleprocedurehas beer20 times crossalidated At each run Nygy 1200 patternsare randomly sampled
from the N\, 1511 validation patternso constitute the training segy neededor building the A models the
remaining Nrgr 311 patternsform the test setX;g; for evaluating the performancef the ensemble of models.

Furthermorea 10-fold crossvalidation has beeperformedto compute the group weighis this respect, at each cress
validation, Nygy np 1000 patterns randomly sampled frotd;gy constitute the trakinduce setX gy o the

other N;p 200patterndorming the induceet X \p -

For each grouphte numberof principal componenteetained to reconstruct the test patterns has been setteduf
the size of the groypfor it represents a good compromise between the accawatythe computational sbof the
model[5, 1519].

The first row in Table 3 reports the results of the reconstruction in terms of the ensembléfentefined as (12).

Compared with the error made by a single reconstruction model built on all 84 gigsalsolumn of Table 3), the
ensemble showsdmprovement 0£6.6%

As stressed in the previe Sctions,a robustensemble oimodek must be able toeconstruct the sigralwhen in
presence of sensor failures, eandom noises, offsets or drifialithin theproposed ensemble approaatfaultysensor
sendsa faulty signalin input to the PCA modslwhich include that signain this situationthe ensemble ofnodek
shouldstill be capable of providing good estimate of the true value of the sidnyagxploitingthe information coming
from the norfaulty signals in the groupsf the ensemble



To verify this,a disturb is introduced in the test.deébre preciselythe sigalsof a test pattern anandomly affected
either bya randomnoise (with probability pRN 0.02) or by setting their value equal to the offset value of the

correspondingensoi(with probability pOF 0.01); with probability 0.97 they are not affected at all.

Defining J asthe total disturb affecting signal:

Nrst
|

T

t1

fi(t) £ (@)

fi (t) (13)

where f; (t) and fi* (t) arethe real and disturbed test pat®rrespectively, He averagepercentaganount of disturb

&5°T introduced in the test sist

¢ 27 100 Ji:

§
: (14)
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The magnitudef ;' is proportional tathe intensity of theandomnoise obviously, &Ji£" 0 if no disturb has

been applied to the test set.

The second row in Table 3 reports the results obtained with disturbed paDemgsagain, the ensemble of models
outperforms the single modeljth an improvement a20.7%.

However, when applyinthe ensernle weighted approach on disturbed signtis, computation of the group weights
becomes a crucial issull fact,calculating the group weigh&s beforeausing undisturbetraining patternamay lead to
large weights fogroups with indeed good reconstiioct performances on thendisturbed signals, but not suitable for
regresig correctly the disturbed signals.

To overcome this limitation, a robust training procedure has been embedded in the enseomisteuctiorscheme. In
this respectthe trainingpaternsare disturbedn the same mannasthose of the test sawith a correspondingmount

of disturb x;f*” defined adn Eq. (14) By sodoing, the group weights are proportional to the group reconstruction
performances on distudd signals

In the last two rows oT able 3, the accuracy and robustness of the fgudtip ensemble approaulith robust training

are compared to those of thimglereconstructiormodel builtwith all 84 signalsRobust training is seen not to improve

the robustness of the model; on the other hand, if no robust training is performed (rows 1 and 2), the reconstruction
error when the test set is disturbed is significantlydéased (+1680% from roW to row 2 against130% fran row 3

to 4).

Reconstructn errors ¥ 10%
Ensemble, & Single group
P W' 0 0.0094 + 0.0096 0.0128 + 0.0151
g /27 0.61 0.1676 + 0.0111 02114+ 0.0138
O 061 W' 0 0.0756 + 0.0247 0.0933 + 0.0259
% /2" 0.61 0.1742 + 0.0213 0.2306+ 0.0567

Table 3.Ensemble approach compared tsirgle modelwith and without robust training.

To investigatefurther the efectiveness ofobust training larger amounts of £0TA)ST have been considered to verify

whetherthe advantage brought by robust training in reconstructing disturbed sijeat®omesghe loss of accuracin
regressing undisturbed signalss an indicator let g,(%) be the absolutepercentage gain obtained with robust

training:

0,00) 1007 5 KE o f@ (15)
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Figure 8showsthatthe effectiveness abbust trainingncreases with &,>' and a sensibladvantagds achievednly

for 450" 4 (Figure 9).

x10"  Ensemble weighted approach error r]E for different test disturb intensities < y>%m
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Figure 8. Ensemble reconstruction erraf,, without and with robust training fafifferent &> .

Figure 9. Absolute percentage gaiR (%) with robust training for different JtIA)ST. The6.62% loss of accuracy in

terms of g, (%) in regressing undisturbed signals:JI/?T 0 s effectively counterbalanced bygain for



The ensembleobustness has bedimen specificallytestedon the reconstrugbn of a faulty signal when othesensor
signals are damagefiignal 7 has beeahosen as the object of the analysidingardrift decreasig its value up to 25%
of its real valuéhas been introducedt the same timepther signalhiave beeritherlinearly driftedor forced in offset.
The different fault scenarios areported in Table 4.

The validationset has beelinearly divided into taining and tesfFigure 4) only oncé€no crossvalidatior), whereasa
10-fold crossvalidation has beemperformedon the computation ahe group weightsTable 4 reports the ensemble

performances on signal ii terms of the signal reconstruction error (Eq. 11) with and without robust training
Figures 10a-c show the reconstruction of signal 7dases A, B and Drespectively

Fauly signals EnseTrSTble recons:ruction error on signal 7,(x 10%
N &N 0 ¢ZN  0.61
A | 2 highly correlatedinearly drifted 0.41 0.8338 0.4910 + 0.1742
B | 2 poorly correlatedinearly drifted 0.3 0.4078 0.4486 + 0.1660
C | 10 randomly selectéihearly drifted 1.26 0.6077 0.5187 + 0.1813
D 1 highly correlatedn offset 1.16 2.0713 0.6290 + 0.3805
E 1 poorly correlatedh offset 0.37 0.3643 0.4582 + 0.1607

Table 4. Ensemblperformancen the reconstruction afignal 7 when linearly drifted irdifferentfault scenarios
When performing robust training0 differently disturbed training setsth are generatedndthe mean
ensemble reconstructieerror on signal 7 is considered.

Robust training(last column) turns out to beffective when highly correlated signals are disturbed (cases A aimd D

Table 4 Figures 10a and 10¢cdark dots); this is truegven if .ﬁ:I/OST is small (case A)In fact, performing robust

training helps reconstructinthe highly correlated ignals useful b reconstruct signa¥. On the contrarywhen
disturbinguncorrelated signals (cases B anthBable 4, robust training isndeed useful focorrectlyreconstrudhg
the disturbed signalfut it unavoidablyintroduces disturbs in the rewstruction of the correlated signaffectively
exploited forreconstrudhg signal 7, thus worsening the reconstruction accurdégyre 1®, dark dot¥ In case C
highly and poorly correlated signals have been dridted the effectiveness of robustitring is due tdahe high value of

TST
NP



Figure 1@ Ensemble reconstruction of signal 7 (light line) when linearly drifted (dark line) inAcasith (dark dots)
and without (light dots) robust training.

Figure 10b. Ensemble eenstruction of signal 7 (light line) when linearly drifted (dark line) in case B, with (dark dots)
and without (light dots) robust training.



Figure 10c. Ensemble reconstruction of signal 7 (light line) when linearly drifted (dark line) in case Rianktddts)
and without (light dots) robust training.

5. Conclusions

In this work, signakeconstruction has been carried outrbgorting to a mulkgroup ensemble approachhe set of
sensor signals, too large to be handled effectively with one singlasteaction model, is subdivided into many small,
overlapping groups and reconstruction modek developedfor each group The outcomes of the modedse then
combined to obtain the ensemble sigraonstruction

Multi-Objective Genetic Algorithmé&iave been used to generatgoups & correlated signajsPrincipal Component
Analysis has been used wild the correspondingeconstruction modelsg weighted combination scheme has been
used to combinehe outcomes of the models

The overall modelling schenteas been applied fahe reconstructiorof signalscollected aia Swedismuclear boiling
water reactarTo enhance robustness, a robust training procedure has been intrddhecestonstruction performances
obtaned by the ensemble approach have hmempared with those of a single model built using all the sigriaés
multi-group ensemble approach has prot@de more accurate and robust than giegle modelindependently of
robust training.

Finally, thereconstructiorcapabilitieswith and withoutrobust traininghave been testazh one faulty signah various
multi-fault scenariosThe results have showhat robust trainingprovidesa more accurate reconstructiof the signal
when highly correlatedsignals are affected by disturbahereasslightly lower performancesre achievedvhen
uncorrelated signals are driftefdy the introduceddisturbsactuallyworsen thereconstruction of theignalscorrelated
to the one of interest, upon which reconstruction is hased
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