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Abstract 

On-line sensor monitoring allows detecting anomalies in sensor operation and reconstructing the correct signals of 
failed sensors by exploiting the information coming from other measured signals. In field applications, the number of 
signals to be monitored is often too large to be handled effectively by a single reconstruction model. A more viable 
approach is that of decomposing the problem by constructing a number of reconstruction models, each one handling an 
individual group of signals. To apply this approach, two problems must be solved: 1) the optimal definition of the 
groups of signals and 2) the appropriate combination of the outcomes of the individual models. With respect to the first 
problem, in this work, Multi -Objective Genetic Algorithms (MOGAs) are devised for finding the optimal groups of 
signals used for building reconstruction models based on Principal Component Analysis (PCA). With respect to the 
second problem, a weighted scheme is adopted to combine appropriately the signal predictions of the individual models. 
The proposed approach is applied to a real case study concerning the reconstruction of 84 signals collected from a 
Swedish nuclear boiling water reactor. 

1. Introduction 

During plant operation, sensors may experience anomalies and convey inaccurate or misleading information on the 
actual plant state to the automated controls and the operators. Hence, it is important to develop accurate and robust 
systems capable of detecting such anomalies and correctly reconstructing the signals of the failed sensors. 

On-line sensor monitoring allows detecting the degradation in the instrument performance; upon such detection, 
recalibration can be initiated. This way of proceeding based on the monitored health condition of the instrumentation 
bears important economic advantages, as the current quest for increased competitiveness by all industries requires 
streamlining all plant operations and reducing system downtime. In general, benefits of this procedure include the 
reduction of unnecessary maintenance and increased confidence in the actual values of the monitored parameters, with 
important consequences on system operation, production and accident management [1, 2]. 

The purpose of this work is to provide a robust technique for reconstructing faulty signals. In many field applications, 
the number of measured signals is too large to be handled effectively with one single reconstruction model [2-5]. A 
viable approach to address the issue of signal dimensionality amounts to subdividing the set of signals into smaller 
overlapping groups, developing a reconstruction model for each group of signals and then combining appropriately the 
outcomes of the models within an ensemble approach [6-8] (Figure 1). 

 

Figure 1. The multi-group ensemble approach to signal reconstruction 

A major motivation behind the use of an ensemble of models is that reliance on different models increases the 
robustness of reconstruction. By assigning appropriate performance indicators to the individual models and basing the 
reconstruction on those models in the ensemble indicated as best performing for a robust reconstruction, failed or de-
calibrated signals can be effectively reconstructed. 

Two issues are central to the ensemble approach for signal reconstruction: (1) the partitioning of the signals into groups 
and (2) the combination of the outcomes of the individual models developed on the basis of the groups.  



In this work, the first issue is tackled by resorting to Multi -Objective Genetic Algorithms (MOGAs) [9-14]. The groups 
thereby found are then used as bases for developing a corresponding number of reconstruction models based on 
Principal Component Analysis (PCA) [15-19]. Regarding the second issue, the outcomes of the models are combined 
by a weighted-combination scheme to provide the ensemble-reconstructed signal values. 

The paper is organized as follows. Section 2 illustrates the MOGA-based method for signal grouping. The ensemble 
approach is then presented in Section 3 and applied in Section 4 to a real case study concerning the reconstruction of a 
data set of 84 signals measured at a Swedish nuclear Boiling Water Reactor located in Oskarshamn. Some conclusions 
on the advantages and limitations of the proposed methods are drawn in the last Section. 

2. Multi -Objective Genetic Algorithms for Signal Grouping 

The problem of signal grouping is here framed as a Multi-Objective Genetic Algorithm (MOGA) optimization search 
[10-14, 20, 21]. Formally, given 1�!�!n  �V�H�Q�V�R�U�V�¶�� �V�L�J�Q�D�O�V��if , i � ���������«��n , the aim of the MOGA search is to group 

them in K  groups with some required characteristics and each one constituted by km n��  signals, k � ���������«��K . The 

inclusion or not of a signal in a group can be encoded in terms of a binary variable which takes value 1 or 0, 
respectively.  

The MOGA probabilistic search is thus performed on a population of K  chromosomes, each one constituted by n  bits 

representing all the signals: in the generick -th chromosome, coding signal group k , the i -th bit, k
is , encodes the 

presence (1) or absence (0) of the i -th signal in the k -th group, 1,2,...,i n� , 1,2,...,k K�  (Figure 2). 

 

Figure 2. The structure of the generick -th chromosome 

In general, in order to effectively group the signals, the objective functions of the genetic search should capture both the 
individual properties of the groups (i.e., the mutual information content of the group signals [4, 5, 21]) and the global 
properties related to the ensemble of groups (i.e., the diversity between the groups, the redundancy of the signals and 
the inclusion of the majority of the signals in the groups [2, 3, 5]). 

The MOGA optimization devised in this work consists of a two-objective genetic search which at convergence leads to 
a final population constituted by groups which maximize the group signals correlation and the diversity between the 
groups in the population. 

The first objective function is intuitively motivated by the fact that the signals in the groups are used to build models for 
their reconstruction and by the conjecture that strongly positively or negatively correlated signals are capable of 
regressing one another. In fact, the information content of strongly negatively correlated signals is also very high and 
comparable to the one derived from strongly positively correlated signals. The measure herein used to quantify these 
characteristics �L�V���W�K�H���3�H�D�U�V�R�Q�¶�V���F�R�U�U�H�O�D�W�L�R�Q coefficient [22, 23]. Considering N  measurements of two signals )(tf p  and 

)(tfq , 1,2,...,t N� , �W�K�H���3�H�D�U�V�R�Q�¶�V���F�R�H�I�I�L�F�L�H�Q�W���L�V���G�H�I�L�Q�H�G���D�V�� 

        (1) 

where pf , 
pfS , qf  and 

qf
S  are the mean values and standard deviations of the signals pf  and qf , respectively. 

By definition, the value of qpcorr ,  ranges from 1��  to 1  and assumes the value of 0 for statistically independent 

quantities. Signals that have the same trend (both increasing or both decreasing with respect to the mean) will have 
positive values of qpcorr , , whereas those which vary in opposite ways will render qpcorr ,  negative. 



To associate a degree of correlation to the generic k -th group of km  signals, 1,2,...,k K� , the average absolute 

correlation of each p-th signal, 1,2,..., kp m� , is first computed as the mean of the absolute values of the correlation 

between the p-th and the remaining 1km ��  signals, viz. 
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Finally, the group correlation kr , computed as the geometric mean of the average correlations of the km  signals in the 
group [24], is taken as first objective function for the group optimization: 
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This measure allows assigning a low correlation to those groups in which at least one signal has a low average 
correlation with respect to the others in the group [24]. 

As for the second objective function, the measure used to compute the diversity between the groups is based on the 
concept of Hamming distance [25, 26]. According to the definition of the chromosome illustrated in Figure 2, to 
compute the pairwise diversity measure hjdiv ,  between the j -th and h -th group in the population, first the numbers of 

different, ,j hdiff , and common signals, ,j hcom , between the two groups are computed: 
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where ,j h
is  is 1 if the i -th signal is included in the j -th or h -th group, respectively, and 0 viceversa and , ( )j h i�G  equals 

1 if the i -th bit of both the j -th and h -th group is equal to 1, i.e. if the two groups have the i -th signal in common, 

and 0 viceversa.  

The pairwise diversity between the j -th and h -th groups is computed based only on the signals effectively included in 

the two groups, viz.: 
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This measure is equal to 0 if two groups are constituted exactly by the same signals (i.e., , 0j hdiff � ) and to 1 if the 

groups have no signals in common. 

The group diversity, kd , between the k -th group and the others 1,2,...,j K�  in the population is finally computed as 

the average pairwise diversity: 
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At the end of the search, the final population is characterized by K  highly correlated and diverse groups of signals; 
these groups are used as bases for developing a corresponding number of reconstruction PCA-based models; these 
models constitute the ensemble for reconstructing the signals, as illustrated in the following Section. 

 



3. The Ensemble Approach to Signal Reconstruction 

The aim of the ensemble approach is to ensure an accurate and robust reconstruction of the signals. The approach is 
sketched in Figure 3.  

 

Figure 3. Sketch of the ensemble algorithm for signal reconstruction 

To integrate the signal predictions provided by the K  groups a weighted combination-scheme has been adopted. This 
way of combining the models outputs can be looked at as an extension to a regression problem of the Static Weighted 
Voting (SWV) technique adopted in classification problems to combine the class assignments of the single classifiers 
constituting the ensemble [27].  

In this approach, each group k  is assigned km  weights, k
iw , 1,2,..., ki m� , the i -th weight being proportional to the 

accuracy of the model developed with group k  in reconstructing the i -th signal. The set XVAL  of VALN  patterns 

available to validate the ensemble performance is first partitioned into a training set XTRN  (made of TRNN  patterns) 

and a test set XTST  (made of TSTN  patterns). The former is used to compute the sets of weights of the individual 

models, whereas the latter is used to verify the ensemble performance in the reconstruction task. To compute the 
weights, the training set must be further partitioned into a so-called train-induce set XTRN IND��  (made of TRN INDN ��  

patterns) and an induce set X IND  (made of INDN  patterns), as illustrated in Figure 4. The weight k
iw  is proportional to 

the error in reconstructing the INDN  induce patterns of the i -th signal made by the model trained on the TRN INDN ��  

patterns of the train-induce set. Thus, in the ensemble average more importance is given to the predictions of those 
groups whose corresponding models better reconstruct signal i .  

 

Figure 4. Subdivision of the validation set 



Operatively, the weights for the generic k -th group are obtained by first computing the absolute reconstruction error for 
each signal 1,2,..., ki m�  on the normalized induce data1, viz: 
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where, for 1,2,..., INDt N� , ( )if t  is the real (normalized) value of the i -th signal and �Ö( )k
if t  is the reconstruction 

obtained by the PCA model built using the signals of the k -th group and trained on the TRN INDN ��  patterns of the train-

induce set. 

The corresponding weight k
iw , 1,2,..., ki m� , is simply taken as the inverse of the signal reconstruction error: 
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Obviously, this measure allows assigning large weights to those groups which provide the most accurate reconstruction 
of signal i . 

Once the weights are computed, the generic PCA model built using the km  signals of group k  is trained on the TRNN  

patterns of the training set to provide in output the predictions �Ö( )k
if t , 1,2,..., TSTt N� , 1,2,..., ki m�  of the TSTN  

patterns of the test set. 

The ensemble reconstruction of the TSTN  patterns of the generic i -th signal, �Ö( )E
if t , 1,2,..., TSTt N� , is then obtained 

by combining the predictions �Ö( )k
if t  of the iK  groups including signal i  with the corresponding weights k

iw , 

1,2,..., ik K� : 
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Finally, to evaluate the ensemble performance, first the absolute signal reconstruction error is computed according to 
Eq. (8) using the ensemble signal predictions: 
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Then, the ensemble accuracy is retained as the average of the absolute signal reconstruction errors: 

            (12) 

4. Application 

The ensemble approach has been applied to a real case study concerning n =84 signals collected at a nuclear Boiling 
Water Reactor (BWR) located in Oskarshamn, Sweden (Figure 5). 

The MOGA code used for the calculations has been developed by the Laboratorio di Analisi di Segnale e di Analisi di 
Rischio (LASAR, Laboratory of Analysis of Signals and Analysis of Risk) of the Department of Nuclear Engineering of 

                                                 
1 In the application which follows, each signal of the validation data set has been previously normalized in the range 
[0.2, 1]. 



the Polytechnic of Milan (http://lasar.cesnef.polimi.it). The PCA code has been taken from 
http://lib.stat.cmu.edu/multi/pca and adapted to perform the signal reconstruction tasks. 

 

Figure 5. The process diagram of the nuclear power plant in Oskarshamn. The 84 signals are identified by an alpha-
numeric code (e.g�������������.�$�������������������.�%�����������H�W�F�«��. 

The data available for the 84 signals have been sampled every 10 minutes from May 31, 2005 to January 5, 2006 from a 
corresponding number of sensors, providing a total amount of 30080N �  time samplings. Each recording instant t  
provides an 84-dimensional pattern )(),...,(),( 8421 tftftf , t � �����«��N , identified by the values of the n =84 signals at 
the time instant t , as illustrated in Table 1.  

The total number of available patterns is divided into a MOGA set XMOGA  of 14966MOGAN �  samples used to perform 

the genetic optimization and a validation set XVAL  of 15114VALN �  samples used to train and test the PCA models and 

to compute the ensemble reconstruction performances (Eqs. 11 and 12). 

 
Time samplings �� ��1,2,...,t N�  Signals �� ��1,2,...,i n�  

14966MOGAN �  
1 1(1)f  2(1)f  �«  84(1)f  

�«      
14966     

15114VALN �  
14967     

�«      

30080 1(30080)f  2(30080)f  �«  84(30080)f  

Table 1. Partition of the total data set for the MOGA signal grouping and ensemble signal reconstruction 

4.1 MOGA signal grouping 

The results of the two-objective MOGA search (Section 2) carried out to find the optimal set of groups are illustrated 
below. The MOGA settings here adopted are reported in Table 2, with a synthetic explanation of the terms used. 

 

http://lasar.cesnef.polimi.it/
http://lib.stat.cmu.edu/multi/pca


Selection 
FIT-FIT: the population, rank-ordered on the basis of the Pareto dominance 
criterion, is scanned and each individual is parent-paired with an individual 
of the next fittest Pareto rank class 

Replacement 
FITTEST: out of the four individuals (two parents and two chromosomes) 
involved in the crossover procedure, the fittest two replace the parents 

Mutation probability 10-2 

Population size 100 

Number of generations 30000 

Table 2. Main parameters used for the MOGA search. For further details on the FIT-FIT selection procedure and the 
FITTEST replacement procedure the interested reader may consult [9, 10]. 

At convergence of the search, 100K �  highly correlated and diverse groups of signals make up the final population. 
Figure 6 reports the main features (correlation, diversity and size) of the optimal groups of the final population. The 
groups contain from 2 to 70 signals and are characterized on average by a good degree of diversity. The value of 
diversity computed according to Eq. (7) is generally lower for small groups, which are naturally the most correlated [4]. 
In general, the groups in the final population are characterized by different trade-offs between the two objectives. 

 

Figure 6. Main features of the 100K �  groups of the final population in ascending order with respect to their size. Each 
group is identified by the value of its correlation kr  (Eq. 3) (top), diversity kd  (Eq. 7) (middle) and size km  (bottom). 

As mentioned in Section 2, an ensemble approach to signal reconstruction is effective only if the groups in the ensemble 
are sufficiently diverse, they ensure a good signal redundancy and include the majority of the signals [2, 3]. Figure 7 
shows that the maximization of diversity as objective function has led to fulfil both these global properties. 



 

Figure 7. Redundancy of each of the 84n �  signals (top) and corresponding distribution (bottom)  

4.2 Ensemble signal reconstruction 

Within the proposed ensemble weighted approach (Section 3), the signals of the K groups are used as bases for 
developing a corresponding number of PCA reconstruction models, as illustrated in Figure 1.  

The validation set VALX  originally formed by 15114VALN �  patterns has been reduced to ' 1511VALN �  patterns by 

sampling one every ten. Note that preliminary studies have shown that reducing the number of samples has negligible 
effects on the values of the errors, while it considerably decreases the computational cost of validating the ensemble of 
models. 

The ensemble procedure has been 20 times cross-validated. At each run, 1200TRNN �  patterns are randomly sampled 

from the ' 1511VALN �  validation patterns to constitute the training set XTRN  needed for building the PCA models; the 

remaining 311TSTN �  patterns form the test set XTST  for evaluating the performance of the ensemble of models. 

Furthermore, a 10-fold cross-validation has been performed to compute the group weights. In this respect, at each cross-
validation, 1000TRN INDN �� �  patterns randomly sampled from XTRN  constitute the train-induce set XTRN IND�� , the 

other 200INDN � patterns forming the induce set X IND . 

For each group, the number of principal components retained to reconstruct the test patterns has been set equal to half 
the size of the group, for it represents a good compromise between the accuracy and the computational cost of the 
model [5, 15-19]. 

The first row in Table 3 reports the results of the reconstruction in terms of the ensemble error E�K  defined as (12). 

Compared with the error made by a single reconstruction model built on all 84 signals (last column of Table 3), the 
ensemble shows an improvement of 26.6%. 

As stressed in the previous Sections, a robust ensemble of models must be able to reconstruct the signals when in 
presence of sensor failures, e.g. random noises, offsets or drifts. Within the proposed ensemble approach, a faulty sensor 
sends a faulty signal in input to the PCA models which include that signal; in this situation, the ensemble of models 
should still be capable of providing a good estimate of the true value of the signal by exploiting the information coming 
from the non-faulty signals in the groups of the ensemble.  



To verify this, a disturb is introduced in the test set. More precisely, the signals of a test pattern are randomly affected 

either by a random noise (with probability 0.02RNp � ) or by setting their value equal to the offset value of the 

corresponding sensor (with probability 0.01OFp � ); with probability 0.97 they are not affected at all.  

Defining i�J  as the total disturb affecting signal i : 
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where ( )if t  and * ( )if t  are the real and disturbed test patterns, respectively, the average percentage amount of disturb 

%
TST�J� ¢ � ² introduced in the test set is: 
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The magnitude of %
TST�J� ¢ � ² is proportional to the intensity of the random noise; obviously, % 0TST�J�¢ �² �  if  no disturb has 

been applied to the test set. 

The second row in Table 3 reports the results obtained with disturbed patterns. Once again, the ensemble of models 
outperforms the single model, with an improvement of 20.7 %. 

However, when applying the ensemble weighted approach on disturbed signals, the computation of the group weights 
becomes a crucial issue. In fact, calculating the group weights as before using undisturbed training patterns may lead to 
large weights for groups with indeed good reconstruction performances on the undisturbed signals, but not suitable for 
regressing correctly the disturbed signals. 

To overcome this limitation, a robust training procedure has been embedded in the ensemble reconstruction scheme. In 
this respect, the training patterns are disturbed in the same manner as those of the test set, with a corresponding amount 
of disturb %

TRN�J� ¢ � ² defined as in Eq. (14). By so doing, the group weights are proportional to the group reconstruction 

performances on disturbed signals. 

In the last two rows of Table 3, the accuracy and robustness of the multi-group ensemble approach with robust training 
are compared to those of the single reconstruction model built with all 84 signals. Robust training is seen not to improve 
the robustness of the model; on the other hand, if no robust training is performed (rows 1 and 2), the reconstruction 
error when the test set is disturbed is significantly increased (+1680% from row 1 to row 2 against +130% from row 3 
to 4).  
 

  
Reconstruction errors (× 10-1) 

Ensemble, E�K  Single group 

% 0TRN�J�¢ �² �  
% 0TST�J�¢ �² �  0.0094 ± 0.0096 0.0128 ± 0.0151 

% 0.61TST�J�¢ �² �  0.1676 ± 0.0111 0.2114 ± 0.0138 

% 0.61TRN�J�¢ �² �  
% 0TST�J�¢ �² �  0.0756 ± 0.0247 0.0933 ± 0.0259 

% 0.61TST�J�¢ �² �  0.1742 ± 0.0213 0.2306 ± 0.0267 

Table 3. Ensemble approach compared to a single model, with and without robust training. 

To investigate further the effectiveness of robust training, larger amounts of %
TST�J� ¢ � ² have been considered to verify 

whether the advantage brought by robust training in reconstructing disturbed signals overcomes the loss of accuracy in 
regressing undisturbed signals. As an indicator, let (%)Ag  be the absolute percentage gain obtained with robust 

training: 
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Figure 8 shows that the effectiveness of robust training increases with %
TST�J� ¢ � ² and a sensible advantage is achieved only 

for %
TST�J� ¢ � ² 4 (Figure 9). 

 

Figure 8. Ensemble reconstruction error, E�K , without and with robust training for different %
TST�J� ¢ � ². 

 

Figure 9. Absolute percentage gain (%)Ag  with robust training for different %
TST�J� ¢ � ². The 6.62% loss of accuracy in 

terms of (%)Ag  in regressing undisturbed signals �� ��% 0TST�J�¢ �² �  is effectively counterbalanced by a gain for 

. 



The ensemble robustness has been then specifically tested on the reconstruction of a faulty signal when other sensor 
signals are damaged. Signal 7 has been chosen as the object of the analysis. A linear drift decreasing its value up to 25% 
of its real value has been introduced; at the same time, other signals have been either linearly drifted or forced in offset. 
The different fault scenarios are reported in Table 4.  

The validation set has been linearly divided into training and test (Figure 4) only once (no cross-validation), whereas a 
10-fold cross-validation has been performed on the computation of the group weights. Table 4 reports the ensemble 

performances on signal 7 in terms of the signal reconstruction error  (Eq. 11), with and without robust training; 

Figures 10a-c show the reconstruction of signal 7 in cases A, B and D, respectively. 

 

Faulty signals  
Ensemble reconstruction error on signal 7, (× 10-1) 

%
TST�J� ¢ � ² % 0TRN�J�¢ �² �  % 0.61TRN�J�¢ �² �  

A 2 highly correlated linearly drifted 0.41 0.8338 0.4910 ± 0.1742 

B 2 poorly correlated linearly drifted 0.39 0.4078 0.4486 ± 0.1660 

C 10 randomly selected linearly drifted 1.26 0.6077 0.5187 ± 0.1813 

D 1 highly correlated in offset 1.16 2.0713 0.6290 ± 0.3805 

E 1 poorly correlated in offset 0.37 0.3643 0.4582 ± 0.1607 

Table 4. Ensemble performance in the reconstruction of signal 7, when linearly drifted in different fault scenarios. 

When performing robust training, 20 differently disturbed training sets with  are generated and the mean 

ensemble reconstruction error on signal 7 is considered. 

Robust training (last column) turns out to be effective when highly correlated signals are disturbed (cases A and D in 

Table 4, Figures 10a and 10c, dark dots); this is true, even if %
TST�J� ¢ � ² is small (case A). In fact, performing robust 

training helps reconstructing the highly correlated signals useful to reconstruct signal 7. On the contrary, when 
disturbing uncorrelated signals (cases B and E in Table 4), robust training is indeed useful for correctly reconstructing 
the disturbed signals, but it unavoidably introduces disturbs in the reconstruction of the correlated signals effectively 
exploited for reconstructing signal 7, thus worsening the reconstruction accuracy (Figure 10b, dark dots). In case C, 
highly and poorly correlated signals have been drifted and the effectiveness of robust training is due to the high value of 

%
TST�J� ¢ � ². 



 
Figure 10a. Ensemble reconstruction of signal 7 (light line) when linearly drifted (dark line) in case A, with (dark dots) 

and without (light dots) robust training. 

 
Figure 10b. Ensemble reconstruction of signal 7 (light line) when linearly drifted (dark line) in case B, with (dark dots) 

and without (light dots) robust training. 



 
Figure 10c. Ensemble reconstruction of signal 7 (light line) when linearly drifted (dark line) in case D, with (dark dots) 

and without (light dots) robust training. 

5. Conclusions 

In this work, signal reconstruction has been carried out by resorting to a multi-group ensemble approach. The set of 
sensor signals, too large to be handled effectively with one single reconstruction model, is subdivided into many small, 
overlapping groups and a reconstruction model is developed for each group. The outcomes of the models are then 
combined to obtain the ensemble signal reconstruction. 

Multi -Objective Genetic Algorithms have been used to generate groups of correlated signals; Principal Component 
Analysis has been used to build the corresponding reconstruction models; a weighted combination scheme has been 
used to combine the outcomes of the models. 

The overall modelling scheme has been applied for the reconstruction of signals collected at a Swedish nuclear boiling 
water reactor. To enhance robustness, a robust training procedure has been introduced. The reconstruction performances 
obtained by the ensemble approach have been compared with those of a single model built using all the signals: the 
multi-group ensemble approach has proved to be more accurate and robust than the single model, independently of 
robust training. 

Finally, the reconstruction capabilities with and without robust training have been tested on one faulty signal in various 
multi-fault scenarios. The results have shown that robust training provides a more accurate reconstruction of the signal 
when highly correlated signals are affected by disturbs, whereas slightly lower performances are achieved when 
uncorrelated signals are drifted, for the introduced disturbs actually worsen the reconstruction of the signals correlated 
to the one of interest, upon which reconstruction is based. 
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