Deterministic Equivalents for the Performance Analysis of Isometric Random Precoded Systems

Jakob Hoydis, Romain Couillet, Merouane Debbah

To cite this version:

HAL Id: hal-00648021
https://hal-supelec.archives-ouvertes.fr/hal-00648021
Submitted on 4 Dec 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Deterministic Equivalents for the Performance Analysis of Isometric Random Precoded Systems

Jakob Hoydis†, Romain Couillet‡, and Mérouane Debbah†
†Department of Telecommunications, Supélec, Gif-sur-Yvette, France
‡Alcatel-Lucent Chair on Flexible Radio, Supélec, Gif-sur-Yvette, France
†EDF Chair on System Sciences and the Energy Challenge, Centrale Paris-Supélec, France
{jakob.hoydis, roomain.couillet, merouane.debbah}@supelec.fr

Abstract—We consider a general wireless channel model for
different types of code-division multiple access (CDMA) and
space-division multiple-access (SDMA) systems with isometric
random signature/precoding matrices over frequency-selective
and flat fading channels. We derive deterministic approximations
of the Stieltjes transform, the mutual information and the
signal-to-interference-plus-noise ratio (SINR) at the output of
the minimum-mean-square-error (MMSE) receiver and provide
a simple fixed-point algorithm for their computation, which
is proved to converge. The deterministic approximations are
asymptotically tight, almost surely, but shown by simulations
to be very accurate for even small system dimensions. Our
analysis requires neither arguments from free probability theory
nor the asymptotic freeness or the convergence of the spectral
distribution of the involved matrices. The results presented in
this work are, therefore, also a novel contribution to the field of
random matrix theory and might be useful to further applications
involving isometric random matrices.

I. INTRODUCTION

Consider the following time-discrete wireless channel

\[y = \sum_{k=1}^{K} H_k W_k \rho^x_k + n \]

(1)

where

(i) \(y \in \mathbb{C}^N \) is the channel output vector.

(ii) \(H_k \in \mathbb{C}^{N \times N} \), \(k = 1, \ldots, K \), are non-random complex
channel matrices.

(iii) \(W_k \in \mathbb{C}^{N \times n_k} \), \(k = 1, \ldots, K \), are complex signature/precoding matrices which contain each \(n_k \leq N \)
orthonormal columns of independent \(N \times N \) Haar-distributed random unitary matrices.

(iv) \(\rho^x_k \in \mathbb{R}^{n_k \times N} \), \(k = 1, \ldots, K \), are non-random nonnegative
orthogonal precoding matrices.

(v) \(x_k \in \mathbb{C}^{n_k} \), \(k = 1, \ldots, K \), are random transmit vectors,
having independent and identically distributed (i.i.d.)
elements with zero mean and unit variance.

(vi) \(n \in \mathbb{C}^N \) is a noise vector having i.i.d. circular-symmetric
complex Gaussian entries with zero mean and variance
\(\rho \).

Possible applications of this channel model arise in the study
of direct-sequence (DS) or multi-carrier (MC) code-division
multiple-access (CDMA) systems with isometric signatures
over frequency-selective fading channels or space-division
multiple-access (SDMA) systems with isometric precoding
matrices over flat-fading channels. More precisely, for DS-
CDMA systems, the \(H_k \) are either Toeplitz or circular matrices
(if a cyclic prefix is used) constructed from the channel impulse response; for MC-CDMA, the matrices \(H_k \) are diagonal
and represent the channel frequency response on each sub-
carrier; for flat fading SDMA systems, the matrices \(H_k \) can
be of arbitrary form and their elements represent the complex
channel gains between the transmit and receive antennas. In
cases, the diagonal entries of the matrices \(P_k \) determine
the transmit power of each signature (CDMA) or transmit
stream (SDMA). Specific scenarios to which the channel
model applies are:

- single/multi-cell uplink DS/MC-CDMA with multiple
 transmit signatures per user
- single/multi-cell downlink DS/MC-CDMA with sin-
 gle/multiple transmit signatures per user
- single/multi-cell uplink SDMA with unitary precoding
 codebooks and multiple streams per user
- single/multi-cell downlink SDMA with unitary precoding
 codebooks and single/multiple streams per user.

The large system analysis of random i.i.d. and random
orthogonal precoded systems with optimal and sub-optimal
linear receivers has been the subject of numerous publications.
The asymptotic performance of minimum-mean-square-error
(MMSE) receivers for the channel model (1) for the case
\(K = 1, P = I_n, \) and \(H \) diagonal with i.i.d. elements has
been studied in [1] relying on results from free probability
theory. This result was extended to frequency-selective channels
and sub-optimal receivers in [2]. The case of i.i.d. and
isometric MC-CDMA over Rayleigh fading channels
with multiple signatures per user terminal, i.e., \(K \geq 1 \) and
\(H_k \) diagonal with i.i.d. complex Gaussian entries, was
considered in [3], where approximate solutions of the signal-
to-noise-plus-interference-ratio (SINR) at the output of
the MMSE receiver were provided. Asymptotic expressions for
the spectral efficiency of the same model were then derived
in [4]. DS-CDMA over flat-fading channels, i.e., \(K \geq 1, n_k = N, \) and \(H_k = I_N \) for all \(k \), was studied in [5], where
the authors derive deterministic equivalents of the Shannon-
and \(\eta \)-transform based on the asymptotic freeness [6] of
the matrices \(W_k P_k W_k^H \). Moreover, a sum-rate maximizing
power-allocation algorithm was proposed. Finally, a different
approach via incremental matrix expansion [7] led to the exact characterization of the asymptotic SINR of the MMSE receiver for the general channel model (1). However, the previously mentioned works share the underlying assumption that the spectral distributions of the matrices H_k and P_k converge to some limiting distributions and/or the matrices $H_kH_k^H$ are jointly diagonalizable. Moreover, the computation of the asymptotic SINR requires the computation of rather complicated implicit equations. These can be solved in most cases by standard fixed-point algorithms but a proof of convergence to the correct solution has not been provided yet. Moreover, a closed-form expression for the asymptotic spectral efficiency is missing, although an approximate solution which requires a numerical integration was presented in [4].

Recently, unitary precoders gained also significant interest for spatial multiplexing systems [8] and are now proposed as limited feedback beamforming solutions in future wireless standards [9]. Thus, the performance evaluation of such systems is compulsory and a field of active research [10]. However, little related analytical work based on large random matrix theory has been published so far and the results presented in this paper might stimulate further research in this direction.

Before we summarize the main results of this work, we need the following definitions. Let B be the $N \times N$ complex matrix

\[
B = \sum_{k=1}^{K} H_k W_k P_k W_k^H H_k^H
\]

and, for $z \in \mathbb{C} \setminus \mathbb{R}_+$, denote by $m(z)$ the Stieltjes transform [6] of the empirical spectral distribution (e.s.d.) F of B, given as

\[
m(z) = \frac{1}{N} \text{tr} (B - zI_N)^{-1} = \int \frac{1}{\lambda - z} dF(\lambda).
\]

Moreover, $I(\rho)$ denotes the normalized mutual information² of the channel (1) assuming complex Gaussian input vectors x_k, given by [11]

\[
I(\rho) = \frac{1}{N} \log \det \left(I_N + \frac{1}{\rho} \sum_{k=1}^{K} H_k W_k P_k W_k^H H_k^H \right) \quad (2)
\]

expressed in nats/s. We further denote by γ_{kj} the SINR at the output of the linear MMSE receiver for the jth component of transmit vector x_k, which reads [12]

\[
\gamma_{kj} = \rho_{kj} w_{kj}^H H_k^H (B_{kj} + \rho I_N)^{-1} H_k w_{kj} \quad (3)
\]

where $B_{kj} = B - \rho_{kj} H_k w_k w_k^H H_k^H$, ρ_{kj} is the jth diagonal entry of P_k and w_{kj} is the jth column of W_k.

The contribution of this paper is twofold. As a contribution to the field of random matrix theory, we provide a deterministic equivalent $\bar{m}(z)$ to $m(z)$, such that, when N and all n_k grow large $m(z) - \bar{m}(z) \xrightarrow{a.s.} 0$.

Denote \bar{F} the distribution function with Stieltjes transform $\bar{m}(z)$. The previous result establishes also that, asymptotically, $F - \bar{F} \Rightarrow 0$, almost surely. Although deterministic equivalents of Stieltjes transforms are by now more or less standard and have been developed for rather involved random matrix models [13], [14], results for the case of Haar distributed matrices are still an exception. In particular, most results on Haar matrices are based on the assumption of asymptotic freeness (see [6, Chapter 3]) of the concerned matrices, a requirement which is rarely met for the matrices of our model. The approach taken in this work is, thus, novel as it does not rely on free probability theory and we do not require any of the matrices in (1) to be asymptotically free.

As a contribution to the field of wireless communications, we derive deterministic approximations $I(\rho)$ and γ_{kj} of $I(\rho)$ and γ_{kj}, respectively, which are asymptotically accurate, almost surely. In contrast to existing works, (i) our deterministic equivalents are easy to compute as we provide a simple fixed-point algorithm which is proved to converge, (ii) the deterministic approximation $I(\rho)$ is given in closed form and does not require any numerical integration, (iii) we do not require that the spectral distributions of the matrices H_k and P_k converge or that the matrices $H_kH_k^H$ are jointly diagonalizable.

\[\implies \]

\[\sup_k \|H_k\| \leq h_{\max}, \quad \sup_k \|P_k\| \leq p_{\max}. \quad (4)\]

Denote by $\mathbb{C}_+ = \{ z \in \mathbb{C} : \Im(z) > 0 \}$, and by S the class of functions f analytic over $\mathbb{C} \setminus \mathbb{R}_+$, such that for $z \in \mathbb{C}_+$, $f(z) \in \mathbb{C}_+$ and $zf(z) \in \mathbb{C}_+$, and $\lim_{y \to \infty} -iyf(iy) = 1$, where $i = \sqrt{-1}$. Such functions are known to be Stieltjes transforms [6] of probability measures over \mathbb{R}_+. We are now in position to state our main results:

\[\text{Theorem 1} \quad (\text{Fundamental equations}) \quad : \quad \text{Assume that the conditions in (4) hold and define the matrices } R_k = H_k^H H_k^H, 1 \leq k \leq K. \text{ Then, for } z \in \mathbb{C} \setminus \mathbb{R}_+, \text{ the following system of } K \text{ implicit equations in } \bar{e}_k(z), 1 \leq k \leq K,
\]

\[\bar{e}_k(z) = \frac{1}{N} \text{tr} P_k (e_k(z)P_k + [1 - e_k(z)]I_n_k)^{-1}, \quad e_k(z) = \frac{1}{N} \text{tr} R_k \left(\sum_{j=1}^{K} \bar{e}_j(z) R_j - zI_n \right)^{-1}. \quad (5)\]

\[\text{We use } \xrightarrow{a.s.} \text{ and } \Rightarrow \text{ to denote almost sure convergence and convergence in distribution, respectively.}\]
has a unique solution \((\tilde{e}_1(z), \ldots, \tilde{e}_K(z)) \in \mathcal{S}^K\). Moreover, for \(z < 0\), the \(e_k(z)\) and \(\tilde{e}_k(z)\) can be easily computed by the fixed-point Algorithm 1.

Algorithm 1 Solve fundamental equations in \(e_k(z), \tilde{e}_k(z)\)

1. Let \(\epsilon > 0, t = 0\) and \(e_k^{(0)} = 1\), \(k = 1, \ldots, K\)
2. repeat
3. Let \(n = 0\) and \(\tilde{e}_k^{(0)} = 0\), \(k = 1, \ldots, K\)
4. repeat
5. \(n = n + 1\)
6. \(\tilde{e}_k^{(n)} = \frac{1}{N} \text{tr} \left(\left[e_k^{(t)} P_k + \left[1 - e_k^{(t)} \tilde{e}_k^{(n-1)} \right] I_{N_k} \right]^{-1} \right) \)
7. until \(\max_k |\tilde{e}_k^{(n)} - \tilde{e}_k^{(n-1)}| < \epsilon\)
8. \(t = t + 1\)
9. \(e_k^{(t)} = \frac{1}{N} \text{tr} R_k \left(\sum_{j=1}^K \tilde{e}_j^{(n)} R_j - z I_N \right) \)
10. until \(\max_k |e_k^{(t)} - e_k^{(t-1)}| < \epsilon\)

Proof: The proof is postponed to the appendix.

Theorem 2 (Deterministic equivalences): Assume that the conditions in (4) hold, define the matrices \(R_k = H_k H_k^H, 1 \leq k \leq K\), and let \(e_k = \frac{1}{N}, 1 \leq k \leq K\).

(i) Let \(m(z) = \frac{1}{N} \text{tr} \left(\sum_{k=1}^K \tilde{e}_k(z) R_k - z I_N \right)\)

where the \(\tilde{e}_j(z)\) are given by Theorem 1. Then, for \(z < 0\), the following holds true

\[
m(z) - m(z) \xrightarrow{a.s. N \to \infty} 0.
\]

Moreover,

\[
F - F \Rightarrow 0
\]

almost surely.

(ii) Let \(\rho > 0\) and denote \(e_k = e_k(-\rho)\) and \(\tilde{e}_k = \tilde{e}_k(-\rho)\).

Consider the quantity:

\[
T(\rho) = \frac{1}{N} \log \left(I_N + \frac{1}{\rho} \sum_{k=1}^K \tilde{e}_k R_k \right)
\]

\[
+ \frac{1}{N} \sum_{k=1}^K \log \left(\left[1 - e_k \tilde{e}_k \right] I_{N_k} + e_k P_k \right)
\]

\[
+ \sum_{k=1}^K (1 - e_k) \log(1 - e_k \tilde{e}_k)
\]

where the \(e_k\) and \(\tilde{e}_k\) are given by Theorem 1. Then, the following holds true

\[
I(\rho) - T(\rho) \xrightarrow{a.s. N \to \infty} 0.
\]

(iii) Let \(\rho > 0\), and define \(e_k = e_k(-\rho)\) and \(\tilde{e}_k = \tilde{e}_k(-\rho)\), by Theorem 1. Further denote

\[
\gamma_{kj} = \frac{p_{kj}}{1 - e_k \tilde{e}_k}.
\]

Then,

\[
\gamma_{kj} - \gamma_{kj} \xrightarrow{a.s. N \to \infty} 0.
\]

Proof: The proof is postponed to the appendix.

III. Numerical Results

We will now demonstrate the accuracy of the deterministic approximations by providing some simulation results. Consider the three-cell uplink channel from \(K = 3\) user terminals (UTs) to three base stations (BSs) as shown in Fig. 1. We focus on the center cell BS2 and assume that the BSs only decode the signals received from the UT in their own cell. The received signal at BS2 reads

\[
y = H_2 W_2 x_2 + \alpha H_1 W_1 x_1 + \alpha H_3 W_3 x_3 + n
\]

where \(0 \leq \alpha \leq 1\) is an inter-cell interference factor and the vector \(z \in \mathbb{C}^N\) combines the inter-cell interference and the thermal noise. The covariance matrix \(Z \in \mathbb{R}^{N \times N}\) of \(z\) is given as

\[
Z = \mathbb{E} [z z^H] = \alpha^2 \sum_{i=1, i \neq 2}^3 H_i W_i P_i W_i^H H_i^H + \rho I_N.
\]

We assume a DS-CDMA system with cyclic prefix so that the channel matrices \(H_k \in \mathbb{C}^{N \times N}\) have a circular structure as given by

\[
H_k = \begin{pmatrix}
 h_{k,1} & 0 & \cdots & 0 & h_{k,L} & \cdots & h_{k,2} \\
 \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & \cdots & 0 & h_{k,L} & \cdots & 0 & \cdots \\
 \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & \cdots & 0 & \cdots & \cdots & \cdots & 0 \\
 \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & \cdots & 0 & \cdots & \cdots & \cdots & h_{k,1}
\end{pmatrix}
\]

where \(L \leq N\) is the delay spread and the channel taps \(h_{k,j} \sim \mathcal{CN}(0, 1)\) are i.i.d. over \(k, j\). For simplicity, we further assume that each UT uses \(n_k = n\) different transmit signatures to which it assigns equal power, i.e., \(P_k = \frac{1}{n} I_n\). Assuming Gaussian signaling, the achievable sum-rate of the center cell \(I(\rho)\) is given by

\[
I(\rho) = \frac{1}{N} \log \left(I_N + \frac{P}{n} Z^{-\frac{1}{2}} H_2 W_2 W_2^H H_2 Z^{-\frac{1}{2}} \right)
\]

\[
= \frac{1}{N} \log \left(\frac{Z}{\rho} + \frac{P}{\rho n} H_2 W_2 W_2^H H_2 \right) - \frac{1}{N} \log \left(\frac{Z}{\rho} \right).
\]

We have chosen this particular structure for comparison purposes with [7]. Note that the matrices \(H_i W_i^H\) are jointly diagonalizable by a Fourier matrix.

In principle, our result holds for any other choice of \(H_k\).
Since both terms in the difference above are of the form (2), we can apply Theorem 2 (ii) to each term separately to compute a deterministic equivalent approximation of $I(\rho)$. An approximation of the SINR at the output of the MMSE receiver for the jth entry of x_2 (as given by (3)) can be computed directly by Theorem 2 (iii). In the sequel, we assume $P = 1$, $\alpha = 0.5$, $N = 32$, $L = 8$ and define $\text{SNR} = 1/\rho$. We consider a single random realization of the matrices H_k and W_k.

Fig. 2 depicts $I(\rho)$ and the deterministic equivalent $\bar{I}(\rho)$ versus SNR for different values of $n = \{1, 4, 8, 16, 32\}$. We observe a very good fit between both results over the full range of SNR and n. This validates the deterministic approximation for systems of even small dimensions.

In Fig. 3, we compare the SINR γ_{21} against its deterministic approximation $\bar{\gamma}_{21}$ as a function of SNR for $n = \{1, 4, 8, 16, 32\}$. Similar to the previous observation, the deterministic equivalent provides an accurate approximation for all values of SNR and n. In order to further verify our results, we have compared them against the expressions derived in [7, Theorem 1]. Both approximations, although not formally identical, turned out to yield almost identical results. However, we need to remark that there is no explicit algorithm provided in [7] to find a solution to the set of implicit equations. In several cases, the classical fixed-point algorithm did not converge to the correct result. Moreover, the result is not proved for non co-diagonalizable matrices $H_k H_k^H$.

IV. CONCLUSION

We have studied a class of wireless communication channels with random unitary signature/precoding matrices which can be used to model different types of CDMA and SDMA systems over frequency-selective and flat fading channels. We have provided deterministic approximations of the Stieltjes transform, the mutual information and the SINR at the output of the MMSE receiver, which are asymptotically accurate, almost surely. To compute these approximations, we have derived a simple fixed-point algorithm and proved its convergence to the correct solution. Our simulations verify the accuracy of the approximations for systems of even small dimensions. Since our analysis is not based on results from free probability theory and we do not require any of the involved matrices to be asymptotically free, our work is also a novel contribution to the field of random matrix theory. We also believe that the derived expressions will find useful applications to the study of future SDMA systems which are foreseen to apply unitary precoding codebooks.

APPENDIX

\textbf{Sketch of proof of Theorem 1 and 2 :} Due to space limitations, we only give a sketch of proof for the case $\lim \sup n_k / N < 1$. The case $\lim \sup n_k / N = 1$ is provided together with the full proof in [15].

We wish to prove that there exists a matrix $F = \sum_{k=1}^{K} f_k R_k$, such that for all nonnegative A with $\|A\| < \infty$ and $z < 0$,

$$\frac{1}{N} \text{tr} A (B - zI_N)^{-1} - \frac{1}{N} \text{tr} A (F - zI_N)^{-1} \xrightarrow{a.s.} 0 \quad \text{as} \quad N \to \infty . \quad (5)$$

At the heart of the derivation is the following trace lemma for Haar distributed matrices:

\textit{Lemma 1 (I1)}: Let W be $n < N$ columns of a $N \times N$ Haar matrix and suppose w is a column of W. Let C_N be a $N \times N$ random matrix, being a function of all columns of W except w, and assume $\sup_N \|C_N\| < \infty$. Then,

$$w^H C_N w - \frac{1}{N - n} \text{tr} (I_N - WW^H + ww^H) C_N \xrightarrow{a.s.} 0 \quad \text{as} \quad N \to \infty .$$

Contrary to classical deterministic equivalent approaches for random matrices with i.i.d. entries, finding a deterministic equivalent for $\frac{1}{N} \text{tr} (B - zI_N)^{-1}$ is not straightforward. This is because terms of the form $\frac{1}{N - n_k} \text{tr} (I - W_k W_k^H)^{1/2} (B - zI)^{-1} A^{1/2}$ will naturally
appear in the derivation (as a consequence of Lemma 1) and need to be controlled. We proceed therefore as follows:

(i) Defining the random variables \(1 \leq k \leq K\)

\[
\delta_k = \frac{1}{N - n_k} \text{tr} (I_N - W_k W_k^H) H_k^H (B - z I_N)^{-1} H_k
\]

\[
f_k = \frac{1}{N} \text{tr} R_k (B - z I_N)^{-1}
\]

and the matrix \(G = \sum_{k=1}^K \delta_k R_k\), we prove that

\[
f_k - \frac{1}{N} \text{tr} R_k \left(\sum_{l=1}^K \delta_l R_l - z I_N \right)^{-1} \overset{\text{a.s.}}{\underset{N \to \infty}{\to}} 0 \quad (6)
\]

where \(\delta_k = \frac{1}{1 - \frac{1}{N} \sum_{l=1}^K \frac{n_k}{1 + p_k g_k}} \sum_{l=1}^K \frac{n_k}{1 + p_k g_k} \). (ii) Since the expression of \(\delta_k\) is not convenient to handle, we show as a next step that

\[
g_k - \frac{1}{N} \text{tr} P_k (f_k P_k + [1 - f_k |g_k| I_{n_k}])^{-1} \overset{\text{a.s.}}{\underset{N \to \infty}{\to}} 0 \quad (7)
\]

(iii) The relations (6) and (7) may be already sufficient to infer the deterministic equivalent, but can be made more attractive for further considerations. We therefore introduce the matrix \(F = \sum_{k=1}^K f_k R_k\) and prove that

\[
f_k - \frac{1}{N} \text{tr} R_k \left(\sum_{l=1}^K f_l R_l - z I_N \right)^{-1} \overset{\text{a.s.}}{\underset{N \to \infty}{\to}} 0
\]

\[
f_k - \frac{1}{N} \text{tr} P_k \left(f_k P_k + [1 - f_k |f_k| I_{n_k}] \right)^{-1} = 0
\]

where \(f_k = \lim_{t \to \infty} x(t)^{\text{eff}}\) and \(x(t)^{\text{eff}}\) is given by the fixed-point algorithm

\[
x(t)^{\text{eff}} = \frac{1}{N} \text{tr} P_k \left(f_k P_k + [1 - f_k |x(t-1)| I_{n_k}] \right)^{-1}
\]

with \(x(0)^{\text{eff}} \in [0, c_k/f_k].\) This means that \(f_k\) is uniquely determined by \(f_k.\) One can also verify that \(x(t)^{\text{eff}} \in [0, c_k/f_k]\) for all \(t,\) and, thus, also \(f_k \in [0, c_k/f_k].\) (iv) We then prove the existence and uniqueness of a solution to the following set of fixed-point equations:

\[
e_k = \frac{1}{N} \text{tr} R_k \left(\sum_{l=1}^K e_l R_l - z I_N \right)^{-1}
\]

\[
\bar{e}_k = \frac{1}{N} \text{tr} P_k \left(\bar{e}_k P_k + [1 - e_k |e_k| I_{n_k}] \right)^{-1}
\]

for all finite \(N, z < 0\) and \(\bar{e}_k \in [0, c_k/e_k].\) While the existence of a solution follows from standard arguments (e.g. [14, Appendix A, Sec. C]), the uniqueness unfolds from a property of so-called standard functions. More precisely, we show that the vector-valued function \(h = (h_1, \ldots, h_K)\) with \(h_k : (x_1, \ldots, x_K) \mapsto \frac{1}{N} \text{tr} R_k \left(\sum_{l=1}^K \bar{x}_l R_l - z I_N \right)^{-1}\) and \(\bar{x}_k\) being the unique solution to

\[
\bar{x}_k = \frac{1}{N} \text{tr} P_k \left(\bar{x}_k P_k + [1 - x_k |\bar{x}_k| I_{n_k}] \right)^{-1}
\]

lying in \([0, c_k/x_k],\) is a standard function. It follows then from [16, Lemma 1, Theorem 1] that the fixed-point equation in \((e_1, \ldots, e_K)\) has a unique solution with positive entries and that this solution can be determined by iteration of the standard fixed-point Algorithm 1. This proves Theorem 1.

(v) The last step is to show that the unique solution \((e_1, \ldots, e_K)\) as provided by Theorem 1 satisfies

\[
e_k - f_k \overset{\text{a.s.}}{\underset{N \to \infty}{\to}} 0.
\]

This is done by standard arguments inspired by the proof of [13, Lemma 6.6]. Using the last result and the fact that \(e_k - f_k \overset{\text{a.s.}}{\underset{N \to \infty}{\to}} 0\) implies \(\bar{e}_k - f_k \overset{\text{a.s.}}{\underset{N \to \infty}{\to}} 0,\) it is straightforward to show (5). Choosing \(A = I_N\) in (5) is sufficient to prove Theorem 2 (i). The proofs of Theorem 2 (ii) and (iii) do not require any novel arguments and are given in [15].

\[\text{REFERENCES}\]

