Massive MIMO in the UL/DL of Cellular Networks: How Many Antennas Do We Need?
Jakob Hoydis, S. ten Brink, Mérouane Debbah

To cite this version:
Jakob Hoydis, S. ten Brink, Mérouane Debbah. Massive MIMO in the UL/DL of Cellular Networks: How Many Antennas Do We Need?. IEEE Journal on Selected Areas in Communications, Institute of Electrical and Electronics Engineers, 2013, 31 (2), pp.160 - 171. 10.1109/JSAC.2013.130205 . hal-00925966

HAL Id: hal-00925966
https://hal-supelec.archives-ouvertes.fr/hal-00925966
Submitted on 8 Jan 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract—We consider the uplink (UL) and downlink (DL) of non-cooperative multi-cellular time-division duplexing (TDD) systems, assuming that the number N of antennas per base station (BS) and the number K of user terminals (UTs) per cell are large. Our system model accounts for channel estimation, pilot contamination, and an arbitrary path loss and antenna correlation for each link. We derive approximations of achievable rates with several linear precoders and detectors which are proven to be asymptotically tight, but accurate for realistic system dimensions, as shown by simulations. It is known from previous work assuming uncorrelated channels, that as $N \to \infty$ while K is fixed, the system performance is limited by pilot contamination, the simplest precoders/detectors, i.e., eigenbeamforming (BF) and matched filter (MF), are optimal, and the transmit power can be made arbitrarily small. We analyze to which extent these conclusions hold in the more realistic setting where N is not extremely large compared to K. In particular, we derive how many antennas per UT are needed to achieve \sim% of the ultimate performance limit with infinitely many antennas and how many more antennas are needed with MF and BF to achieve the performance of minimum mean-square error (MMSE) detection and regularized zero-forcing (RZF), respectively.

Index Terms—massive MIMO, time-division duplexing, channel estimation, pilot contamination, large system analysis, large random matrix theory, linear precoding, linear detection

I. INTRODUCTION

VERY large multiple-input multiple-output (MIMO) or “massive MIMO” time-division duplexing (TDD) systems [1], [2] are currently investigated as a novel cellular network architecture with several attractive features: First, the capacity can be theoretically increased by simply installing additional antennas to existing cell sites. Thus, massive MIMO provides an alternative to cell-size shrinking, the traditional way of increasing the network capacity [3]. Second, large antenna arrays can potentially reduce uplink (UL) and downlink (DL) transmit powers through coherent combining and an increased antenna aperture [4]. This aspect is not only relevant from a business point of view but also addresses environmental concerns related to mobile communications.

Manuscript received January 28, 2012; revised June 7, 2012; accepted September 4, 2012. Communicated by Thomas L. Marzetta, Guest editor. Parts of this work have been presented at the Allerton Conference on Communication, Control, and Computing, Urbana-Champaign, IL, US, Sep. 2011, and the IEEE International Conference on Communications, Ottawa, Canada, Jun. 2012.

J. Hoydis is with Bell Laboratories, Alcatel-Lucent, Lorenzstr. 10, 70435 Stuttgart, Germany (email: jakob.hoydis@alcatel-lucent.com).

S. ten Brink is with Bell Laboratories, Alcatel-Lucent, Lorenzstr. 10, 70435 Stuttgart, Germany (email: stephan.tenbrink@alcatel-lucent.com).

M. Debbah is with the Alcatel Lucent Chair on Flexible Radio, Supélec, 91192 Gif-sur-Yvette, France (email: merouane.debbah@supelec.fr).

[5], [6]. Third, if channel reciprocity is exploited, the overhead related to channel training scales linearly with the number K of user terminals (UTs) per cell and is independent of the number N of antennas per base station (BS). Consequently, additional antennas do not increase the feedback overhead and, therefore, “always help” [7]. Fourth, if $N \gg K$, the simplest linear precoders and detectors are optimal, thermal noise, interference, and channel estimation errors vanish, and the only remaining performance limitation is pilot contamination [1], i.e., residual interference which is caused by the reuse of pilot sequences in adjacent cells.

The features described above are based on several crucial but optimistic assumptions about the propagation conditions, hardware implementations, and the number of antennas which can be deployed in practice. Therefore, recent papers study massive MIMO under more realistic assumptions, e.g., a physical channel model with a finite number of degrees of freedom (DoF) [8] or constant-envelope transmissions with per-antenna power constraints [9]. Also first channel measurements with large antenna arrays were reported in [10], [11], [12].

In this work, we provide a unified performance analysis of the UL and DL of non-cooperative multi-cell TDD systems. We consider a realistic system model which accounts for imperfect channel estimation, pilot contamination, antenna correlation, and path loss. Assuming that N and K are large, we derive asymptotically tight approximations of the achievable rates with several linear precoders/detectors, i.e., eigenbeamforming (BF) and regularized zero-forcing (RZF) in the DL, matched filter (MF) and minimum mean-square error detector (MMSE) in the UL. These approximations are easy to compute and shown to be accurate for realistic system dimensions. We then distinguish massive MIMO from “classical” MIMO as a particular operating condition of cellular networks where multiuser interference, channel estimation errors, and noise have a negligible impact compared to pilot contamination. If this condition is satisfied or not depends on several system parameters, such as the number of UTs per DoF the channel offers (we denote by DoF the rank of the antenna correlation matrices which might be smaller than N), the number of antennas per BS, the signal-to-noise ratio (SNR), and the path loss. We further study how many antennas per UT are needed to achieve \sim% of the ultimate performance limit with infinitely many antennas and how many more antennas are needed with BF/MF to achieve RZF/MMSE performance. Our simulations suggest that in certain scenarios, RZF/MMSE can perform as well as BF/MF with almost one order of magnitude fewer antennas.
The paper is organized as follows: In Section II, we describe the system model and derive achievable UL and DL rates with linear detectors and precoders. Section III contains our main technical results where we derive asymptotically tight approximations of these rates. In Section IV, we apply the asymptotic results to a simplified system model which leads to concise closed-form expressions of the achievable rates. In Section V, we discuss approximations of these rates. In Section VI, we apply the main technical results where we derive asymptotically tight asymptotic results to a simplified system model which leads to concise closed-form expressions of the achievable rates. In Section VI, we apply the main technical results where we derive asymptotically tight asymptotic results to a simplified system model which leads to concise closed-form expressions of the achievable rates.

Notations: Boldface lower and upper case symbols represent vectors and matrices, respectively (I_N is the size-N identity matrix). The trace, transpose, and Hermitian transpose operators are denoted by tr (·), (·)^T, and (·)H, respectively. The spectral norm of a matrix A is denoted by ∥A∥. We use CN (m, R) to denote the circular symmetric complex Gaussian distribution with mean m and covariance matrix R. E [·] denotes the expectation operator. lim_N→∞ stands for the limit as N approaches infinity.

II. SYSTEM MODEL

Consider a multi-cellular system consisting of L > 1 cells with one BS and K UTs in each cell, as schematically shown in Fig. 1. The BSs are equipped with N antennas, the UTs have a single antenna. We assume that all BSs and UTs are perfectly synchronized and operate a TDD protocol with universal frequency reuse. We consider transmissions over flat-fading channels on a single frequency band or sub-carrier. Extensions to multiple sub-carriers, different numbers of antennas at the BSs, or different numbers of UTs in each carrier. Extensions to multiple sub-carriers, different numbers of antennas at the BSs, or different numbers of UTs in each carrier.

A. Uplink

The received base-band signal vector y_j^u ∈ CN at BS j at a given time instant reads

\[y_j^u = \sqrt{\rho_{ul}} \sum_{l=1}^{L} H_{jl} x_l^d + n_j^u \]

where \(H_{jl} = [h_{jl1} \cdots h_{jlk}] \in \mathbb{C}^{N \times K} \), \(h_{jlk} \in \mathbb{C}^N \) is the channel from UT k in cell l to BS j, \(x_l^d \) is the transmit signal of UT k in cell l, \(n_j^u \sim \mathcal{CN}(0, I_N) \) is a noise vector, and \(\rho_{ul} > 0 \) denotes the uplink SNR. We model the channel vectors \(h_{jlk} \) as

\[h_{jlk} = \tilde{R}_{jlk} v_{jlk} \]

where \(\tilde{R}_{jlk} \) is the Hermitian transpose of the uplink channel \(h_{jlk} \) and \(v_{jlk} \sim \mathcal{CN}(0, I_K) \) is independent fast-fading channel vectors. Our channel model is very versatile as it allows us to assign a different antenna correlation to each channel vector. This is especially important for large antenna arrays with a significant amount of antenna correlation due to either insufficient antenna spacing or a lack of scattering. The channel model is also valid for distributed antenna systems since we can assign a different path loss to each antenna. Moreover, (2) can represent a physical channel model with a fixed number of dimensions or angular bins \(P \) as in [8], by letting \(\tilde{R}_{jlk} = \sqrt{T_{jlk}} \tilde{A} \) where \(\tilde{A} \in \mathbb{C}^{N \times P} \), \(0_{N \times (N-P)} \) is the \(N \times (N-P) \) zero matrix, and \(T_{jlk} \) is the inverse path loss from UT k in cell l to BS j.

B. Downlink

The received signal \(y_{ljm}^d \) in the mth UT in the jth cell is given as

\[y_{ljm}^d = \sqrt{\rho_{dl}} \sum_{l=1}^{L} h_{ljm}^H s_l + n_{ljm}^d \]

where \(s_l \in \mathbb{C}^N \) is the transmit vector of BS l, \(n_{ljm}^d \sim \mathcal{CN}(0, I_K) \) is receiver noise, and \(\rho_{dl} > 0 \) denotes the downlink SNR. We assume channel reciprocity, i.e., the downlink channel \(h_{ljm}^H \) is the Hermitian transpose of the uplink channel \(h_{ljm} \). The transmit vector \(s_l \) is given as

\[s_l = \sqrt{\lambda_l} \sum_{k=1}^{K} w_{lk} x_l^d = \sqrt{\lambda_l} W_l x_l^d \]

where \(W_l = [w_{l1} \cdots w_{lK}] \in \mathbb{C}^{N \times K} \) is a precoding matrix and \(x_l^d = [x_{l1}^d \cdots x_{lK}^d]^T \in \mathbb{C}^K \sim \mathcal{CN}(0, I_K) \) contains the data symbols for the K UTs in cell l. The parameter \(\lambda_l \) normalizes the average transmit power per UT of BS l to \(E [\lambda_l s_l^H s_l] = \rho_{dl} \), i.e.,

\[\lambda_l = \frac{1}{E [\frac{1}{K} \text{tr} W_l W_l^H]} \]

C. Channel estimation

During a dedicated uplink training phase, the UTs in each cell transmit mutually orthogonal pilot sequences which allow the BSs to compute estimates \(\hat{H}_{jj} \) of their local channels \(H_{jj} \). The same set of orthogonal pilot sequences is reused in every cell so that the channel estimate is corrupted by pilot contamination from adjacent cells [1]. After correlating the received training signal with the pilot sequence of UT k, the jth BS estimates the channel vector \(h_{jlk} \) based on the
observation \(y_{jk}^r = h_{jk} + \sum_{l \neq j} h_{jlk} + \frac{1}{\sqrt{p_t}} n_{jk}^r \) \(\in \mathbb{C}^N \), given as\(^1\)

\[
y_{jk}^r = h_{jk} + \sum_{l \neq j} h_{jlk} + \frac{1}{\sqrt{p_t}} n_{jk}^r \quad (6)
\]

where \(n_{jk}^r \sim C\mathcal{N}(0, I_N) \) and \(p_t > 0 \) is the effective training SNR. In general, \(p_t \) depends on the pilot transmit power and the length of the pilot sequences. Here, we assume \(p_t \) to be a given parameter. The MMSE estimate \(\hat{h}_{jk} \) of \(h_{jk} \) is given as [13]

\[
\hat{h}_{jk} = R_{jk}Q_{jk}y_{jk}^r = R_{jk}Q_{jk} \left(\frac{1}{p_t} \sum_l h_{jlk} + \frac{1}{\sqrt{p_t}} n_{jk}^r \right) \quad (7)
\]

which can be shown to be distributed as \(\hat{h}_{jk} \sim C\mathcal{N}(0, \Phi_{jjk}) \), where we define

\[
\Phi_{jjk} = R_{jk}Q_{jk}R_{jk}^{-1}, \quad \forall j, l, k.
\]

Invoking the orthogonality property of the MMSE estimate [13], we can decompose the channel \(h_{jk} \) as \(h_{jk} = \hat{h}_{jk} + \tilde{h}_{jk} \), where \(\hat{h}_{jk} \sim C\mathcal{N}(0, R_{jk} - \Phi_{jjk}) \) is the uncorrelated estimation error (which is also statistically independent of \(\hat{h}_{jk} \) due to the joint Gaussianity of both vectors).

D. Achievable uplink rates with linear detection

We consider linear single-user detection, where the \(j \)th BS estimates the symbol \(x_{jm}^u \) of UT \(m \) in its cell by computing the inner product between the received vector \(y_{jm}^u \) and a linear filter \(r_{jm}^u \in \mathbb{C}^N \). Two particular filters are of practical interest, namely the matched filter \(r_{jm}^{MF} \) and the MMSE detector \(r_{jm}^{MMSE} \), which we define respectively as

\[
r_{jm}^{MF} = \hat{h}_{jm},
\]

\[
r_{jm}^{MMSE} = \left(\hat{H}_{jj} + \mathbf{Z}_j^u + N_s r_{jm}^u I_N \right)^{-1} \hat{h}_{jm} \quad (11)
\]

where \(\mathbf{Z}_j^u \in \mathbb{C}^{N \times N} \) is an arbitrary Hermitian nonnegative definite matrix. This formulation of \(r_{jm}^{MMSE} \) allows us to treat \(r_{jm}^{u} \) and \(\mathbf{Z}_j^u \) as design parameters which could be optimized. One could choose for example \(r_{jm}^{u} = \frac{1}{p_t} \) and \(\mathbf{Z}_j^u \) to be the covariance matrix of the intercell interference and the channel estimation errors, i.e.,

\[
\mathbf{Z}_j^u = \mathbb{E} \left[\hat{H}_{jj} + \sum_{l \neq j} \hat{H}_{jlk} \right] = \sum_k \left(R_{jk} - \Phi_{jjk} \right) + \sum_{l \neq j} \sum_k R_{jlk}. \quad (12)
\]

Using a standard bound based on the worst-case uncorrelated additive noise [14] yields the ergodic achievable uplink rate \(R_{jm}^{ul} \) of UT \(m \) in cell \(j \):

\[
R_{jm}^{ul} = \mathbb{E} \left[\log_2 \left(1 + \gamma_{jm} \right) \right] \quad (13)
\]

where the associated signal-to-interference-plus-noise ratio (SINR) \(\gamma_{jm} \) is given by (14) on the top of the next page and where we have used \(\mathbb{E}[\cdot] \) to denote the conditional expectation operator. We will denote by \(\gamma_{jm}^{MF} \) and \(\gamma_{jm}^{MMSE} \) the SINR with MF and MMSE detection, respectively.

E. Achievable downlink rates with linear precoding

Since the UTs do not have any channel estimate, we provide an ergodic achievable rate based on the techniques developed in [15]. To this end, we decompose the received signal \(y_{jm}^d \) as

\[
y_{jm}^d = \sqrt{p_d} \lambda_j \mathbb{E} \left[h_{jm}^H w_{jm} \right] x_{jm}^d + \sqrt{p_d} \lambda_j \left(h_{jm}^H w_{jm} - \mathbb{E} \left[h_{jm}^H w_{jm} \right] \right) x_{jm}^d + \sum_{(l,k) \neq (j,m)} \sqrt{p_d} \lambda_{jk} h_{jm}^H w_{lk} x_{lk}^d + n_{jm}^d \quad (16)
\]

and assume that the effective average channels \(\mathbb{E} \left[h_{jm}^H w_{jm} \right] \) are perfectly learned at the UTs. Thus, an ergodic achievable rate \(R_{jm}^{dl} \) of UT \(m \) in cell \(j \) is given as [15, Theorem 1]

\[
R_{jm}^{dl} = \log_2 \left(1 + \gamma_{jm}^{dl} \right) \quad (17)
\]

where the associated SINR \(\gamma_{jm}^{dl} \) is given by (15) on the top of the next page.\(^2\)

We consider two different linear precoders \(W_j \) of practical interest, namely eigenbeamforming (BF) \(W_j^{BF} \) and regularized zero-forcing (RZF) \(W_j^{RZF} \), which we define respectively as

\[
W_j^{BF} = \hat{H}_{jj},
\]

\[
W_j^{RZF} = \left(\hat{H}_{jj} + \mathbf{Z}_j^d + N_s r_{jm}^d I_N \right)^{-1} \hat{H}_{jj} \quad (19)
\]

where \(\mathbf{Z}_j^d > 0 \) is a regularization parameter and \(\mathbf{Z}_j^d \in \mathbb{C}^{N \times N} \) is an arbitrary Hermitian nonnegative definite matrix. As the choice of \(\mathbf{Z}_j^d \) is arbitrary, they could be further optimized (see, e.g., [15, Theorem 6]). This is outside the scope of this paper and left to future work. We will denote by \(\gamma_{jm}^{BF} \) and \(\gamma_{jm}^{RZF} \) the SINR with BF and RZF, respectively.

Remark 2.1: Under a block-fading channel model with coherence time \(T \), one could account for the rate loss due to channel training by considering the net ergodic achievable rates \(\kappa(1 - \tau/T) R_{jm}^{ul} \) and \((1 - \kappa)(1 - \tau/T) R_{jm}^{dl} \) for a given training length \(\tau \in [K, T] \) and some \(\kappa \in [0, 1] \) which determines the fraction of the remaining time used for uplink transmissions.

\(^1\)For an integer variable \(s \) taking values in a set \(S \), we use \(\sum_s \) to denote the summation over all \(s \in S \) and \(\sum_{s \neq j} \) to denote the summation over all \(s \in S \setminus \{j\} \). Similarly, let \(s' \) be another integer variable taking values in the set \(S' \), we denote by \(\sum_{(s,s') \neq (j,j')} \) the summation over all tuples \((s,s') \in S \times S' \setminus \{(j,j')\} \).

\(^2\)We denote by \(\text{var}[x] \equiv \mathbb{E}[(x - \mathbb{E}[x])(x - \mathbb{E}[x])^H] \) for some random variable \(x \).
\begin{equation}
\gamma_{jm}^{al} = \mathbb{E}\left[|r_j^H \hat{h}_{j,jm}|^2\right] + \frac{1}{n_a} \mathbb{I}_N + \hat{h}_{j,jm}^H \hat{h}_{j,jm} - \hat{h}_{j,jm}^H \hat{h}_{j,jm}^T + \sum_h \hat{H}_j \hat{H}_j^H r_{jm} \hat{H}_j^H
\end{equation}

\begin{equation}
\gamma_{jm}^{dl} = \frac{\lambda_j \mathbb{E}[|h_{j,jm}^H w_{jm}|]^2}{\frac{1}{n_a} + \lambda_j \text{var}[h_{j,jm}^H w_{jm}] + \sum_{(l,k)\neq (j,m)} \lambda_l \mathbb{E}|h_{j,jm}^H w_{lk}|^2}
\end{equation}

III. ASYMPTOTIC ANALYSIS

As the ergodic achievable rates P_{jm}^{al} and P_{jm}^{dl} with both types of detectors and precoders are difficult to compute for finite system dimensions, we consider the large system limit, where N and K grow infinitely large while keeping a finite ratio K/N. This is in contrast to [1] where the authors assume that the number of UTs remains fixed while the number of antennas grows without bound. We will retrieve the results of [1] as a special case. In the following, the notation “$N \to \infty$” will refer to $K,N \to \infty$ such that $\lim\sup_N K/N < \infty$. From now on, all vectors and matrices must be understood as sequences of vectors and matrices of growing dimensions. For the sake of simplicity, their dependence on N and K is not explicitly shown. The large system limit implicitly assumes that the coherence time of the channel scales linearly with K (to allow for orthogonal pilot sequences of the UTs in a cell). However, as we use the asymptotic analysis only as a tool to provide tight approximations for finite N,K, this does not pose any problem. In a realistic deployment, one could expect BSs equipped with several hundred antennas serving each tens of UTs simultaneously [1].

In what follows, we will derive deterministic approximations γ_{jm}^{al} (γ_{jm}^{dl}) of the SINR γ_{jm}^{al} (γ_{jm}^{dl}) with the MF and the MMSE detector (BF and RZF precoder), respectively, such that

\begin{equation}
\gamma_{jm}^{al} - \gamma_{jm}^{al} \xrightarrow{a.s.} N \to \infty 0, \quad \gamma_{jm}^{dl} - \gamma_{jm}^{dl} \xrightarrow{N \to \infty} 0
\end{equation}

where “$\xrightarrow{a.s.} N \to \infty$” denotes almost sure convergence. One can then show by the dominated convergence [18] and the continuous mapping theorem [19], respectively, that (20) implies that

\begin{align}
P_{jm}^{al} &- \log_2 (1 + \gamma_{jm}^{al}) \xrightarrow{N \to \infty} 0 \quad N \to \infty \\
P_{jm}^{dl} &- \log_2 (1 + \gamma_{jm}^{dl}) \xrightarrow{N \to \infty} 0
\end{align}

These results must be understood in the way that, for each given set of system parameters N and K, we provide approximations of the SINR and the associated rates which become increasingly tight as N and K grow. We will show later by simulations that these approximations are very accurate for realistic system dimensions. As we make limiting considerations, we assume that the following conditions hold:

A 1: $\limsup_N \|R_{jlk}\| < \infty \forall j,l,k$

A 2: $\liminf_N \frac{1}{N} \text{tr} R_{jlk} > 0 \forall j,l,k$

A 3: $\limsup_N \|\frac{1}{N} Z_{jm}\| < \infty$, $\limsup_N \|\frac{1}{N} Z_{jm}\| < \infty \forall j$

Before we continue, we recall two related results of large random matrix theory which will be required for the asymptotic performance analysis of the MMSE detector and the RZF precoder.

Theorem 1 ([20, Theorem 1]): Let $D \subset \mathbb{C}^{N \times N}$ and $S \subset \mathbb{C}^{N \times N}$ be Hermitian nonnegative definite and let $H \in \mathbb{C}^{N \times K}$ be random with independent column vectors $h_k \sim \mathcal{CN}(0, \frac{1}{N} R_k)$. Assume that D and the matrices R_k, $k = 1, \ldots, K$, have uniformly bounded spectral norms (with respect to N). Then, for any $\rho > 0$,

\begin{equation}
\frac{1}{N} \text{tr} D (HH^H + S + \rho I_N)^{-1} - \frac{1}{N} \text{tr} D T(\rho) \xrightarrow{a.s.} \frac{1}{N} \sum_{k=1}^K \frac{R_k}{1 + \delta_k(\rho)} + S + \rho I_N \xrightarrow{a.s.} 0
\end{equation}

where $T(\rho) \in \mathbb{C}^{N \times N}$ is defined as

\begin{equation}
T(\rho) = \left(\frac{1}{N} \sum_{k=1}^K \frac{R_k}{1 + \delta_k(\rho)} + S + \rho I_N \right)^{-1}
\end{equation}

and the elements of $\delta(\rho) : [\delta_1(\rho) \cdots \delta_K(\rho)]^T$ are defined as $\delta_k(\rho) = \lim_{t \to \infty} \delta_k^t(\rho)$, where for $t = 1,2, \ldots$

\begin{equation}
\delta_k^t(\rho) = \frac{1}{N} \text{tr} R_k \left(\frac{1}{N} \sum_{j=1}^K \frac{R_j}{1 + \delta_j^{t-1}(\rho)} + S + \rho I_N \right)^{-1}
\end{equation}

with initial values $\delta_k^0(\rho) = 1/\rho$ for all k.

Remark 3.1: The fixed-point algorithm in Theorem 1 to compute the quantities $\delta_k(\rho)$ can be efficiently numerically solved and is proved to converge. In some cases, closed-form solutions for $\delta(\rho)$ exists. An example will be shown later in Corollary 3.

Theorem 2 ([21], see also [20]): Let $\Theta \subset \mathbb{C}^{N \times N}$ be Hermitian nonnegative definite with uniformly bounded spectral norm (with respect to N). Under the conditions of Theorem 1,

\begin{equation}
\frac{1}{N} \text{tr} D (HH^H + S + \rho I_N)^{-1} \Theta (HH^H + S + \rho I_N)^{-1} - \frac{1}{N} \text{tr} D T'(\rho) \xrightarrow{a.s.} \frac{1}{N} \sum_{k=1}^K \frac{R_k}{1 + \delta_k(\rho)} T(\rho)
\end{equation}

where $T'(\rho) \in \mathbb{C}^{N \times N}$ is defined as

\begin{equation}
T'(\rho) = T(\rho) \Theta T(\rho) + T(\rho) \left(\frac{1}{N} \sum_{k=1}^K \frac{R_k}{1 + \delta_k(\rho)} \right)^2 T(\rho)
\end{equation}
\(\mathbf{T}(\rho) \) and \(\delta(\rho) \) are given by Theorem 1, and
\(\delta'(\rho) = [\delta'_1(\rho) \cdots \delta'_K(\rho)]^T \) is calculated as

\[
\delta'(\rho) = (\mathbf{J}_K - \mathbf{J}(\rho))^{-1} \mathbf{v}(\rho)
\]

where \(\mathbf{J}(\rho) \in \mathbb{C}^{K \times K} \) and \(\mathbf{v}(\rho) \in \mathbb{C}^K \) are defined as

\[
[\mathbf{J}(\rho)]_{kl} = \frac{1}{N} \text{tr} \mathbf{R}_k \mathbf{T}(\rho) \mathbf{R}_l \mathbf{T}(\rho) \frac{1}{N(1 + \delta(\rho))^2}, \quad 1 \leq k, l \leq K
\]

\[
[\mathbf{v}(\rho)]_k = \frac{1}{N} \text{tr} \mathbf{R}_k \mathbf{T}(\rho) \mathbf{\Theta} \mathbf{T}(\rho), \quad 1 \leq k \leq K.
\]

Next, we provide SINR approximations in the sense of (20) for MF and MMSE detection in the UL and for BF and RZF precoding in the DL. These are our main results. Due to the similarity of the SINR expressions for the UL and DL, we only provide the proofs for BF and RZF in the appendix. The proofs for MF and MMSE are very similar and omitted due to space constraints.

Theorem 3 (Matched filter): Assume that A 1–3 hold. Then, \(\gamma_{jm}^{MF} = \gamma_{jm}^{MF} \xrightarrow{a.s.} 0, N \rightarrow \infty \), where \(\gamma_{jm}^{MF} \) is given in (23).

Theorem 4 (Eigenbeamforming): Assume that A 1–3 hold. Then, \(\gamma_{jm}^{BF} = \gamma_{jm}^{BF} \xrightarrow{a.s.} 0, N \rightarrow \infty \), where \(\gamma_{jm}^{BF} \) is given in (24) with

\[
\lambda_j = \left(\frac{1}{N} \sum_{k=1}^{K} \text{tr} \Phi_{jk} \right)^{-1} \forall j.
\]

Theorem 5 (MMSE detector): Assume that A 1–3 hold. Then, \(\gamma_{jm}^{MMSE} = \gamma_{jm}^{MMSE} \xrightarrow{a.s.} 0, N \rightarrow \infty \), where \(\gamma_{jm}^{MMSE} \) is given in (25) with

\[
\mu_{jlk} = \frac{1}{N} \text{tr} \mathbf{R}_{jk} \mathbf{T}_{jm} - \frac{2\text{Re} \left(\delta^*_{jlm} \delta'_{jkm} \right) (1 + \delta_{jm}) - |\delta_{jlk}|^2 \delta'_{jkm}}{(1 + \delta_{jm})^2}
\]

\[
\phi_{jk} = \frac{1}{N} \text{tr} \Phi_{jk} \mathbf{T}_{jm}
\]

where

(i) \(\mathbf{T}_{j} = \mathbf{T}(\varphi_{jl}^{ul}) \) and \(\delta_j = [\delta_j \cdots \delta_j]^T = \delta(\varphi_{jl}^{ul}) \) are given by Theorem 1 for \(\mathbf{S} = \mathbf{Z}_{j}^{ul}/N, \mathbf{D} = \mathbf{I}_N, \) and \(\mathbf{R}_k = \Phi_{jk} \forall k, \)

(ii) \(\mathbf{T}_{j} = \mathbf{T}(\varphi_{jl}^{ul}) \) is given by Theorem 2 for \(\mathbf{S} = \mathbf{Z}_{j}^{ul}/N, \mathbf{D} = \mathbf{I}_N, \) and \(\mathbf{R}_k = \Phi_{jk} \forall k, \)

(iii) \(\mathbf{T}_{jm} = \mathbf{T}(\varphi_{jl}^{ul}) \) and \(\delta_{jm} = [\delta_{jl} \cdots \delta_{jm}]^T = \delta(\varphi_{jl}^{ul}) \) are given by Theorem 2 for \(\mathbf{S} = \mathbf{Z}_{j}^{ul}/N, \mathbf{D} = \mathbf{I}_N, \) and \(\mathbf{R}_k = \Phi_{jk} \forall k. \)

Theorem 6 (Regularized Zero-Forcing): Assume that A 1–3 hold. Then, \(\gamma_{jm}^{RZF} = \gamma_{jm}^{RZF} \xrightarrow{a.s.} 0, \) where \(\gamma_{jm}^{RZF} \) is given in

\[
\mu_{jlmk} = \frac{1}{N} \text{tr} \mathbf{R}_{jlm} \mathbf{T}_{lk} - \frac{2 \text{Re} \left(\delta_{l}^{*} \delta'_{l} \right) (1 + \delta_{lm}) - |\delta_{l}^{*} \delta'_{l} \right|^2 \delta'_{lmk}}{(1 + \delta_{lm})^2}
\]

\[
\mathbf{v}_{l} = \frac{1}{N} \text{tr} \Phi_{ljm} \mathbf{T}_{l}
\]

\[
\lambda_{l} = \frac{1}{N} \text{tr} \mathbf{T}_{l} - \frac{1}{N} \text{tr} \left(\mathbf{Z}_{l}^{ul} + \varphi_{jl}^{ul} \mathbf{I}_N \right) \mathbf{T}_{l}^{-1}
\]

where

(i) \(\mathbf{T}_{l} = \mathbf{T}(\varphi_{jl}^{ul}) \) and \(\delta_j = [\delta_j \cdots \delta_j]^T = \delta(\varphi_{jl}^{ul}) \) are given by Theorem 1 for \(\mathbf{S} = \mathbf{Z}_{l}^{ul}/N, \mathbf{D} = \mathbf{I}_N, \) and \(\mathbf{R}_k = \Phi_{lk} \forall k, \)

(ii) \(\mathbf{T}'_{l} = \mathbf{T}'(\varphi_{jl}^{ul}) \) is given by Theorem 2 for \(\mathbf{S} = \mathbf{Z}_{l}^{ul}/N, \mathbf{D} = \mathbf{I}_N, \) and \(\mathbf{R}_k = \Phi_{lk} \forall k, \)

(iii) \(\mathbf{T}_{lk} = \mathbf{T}'(\varphi_{jl}^{ul}) \) and \(\delta_{jk} = [\delta_{j1k} \cdots \delta_{jKk}]^T = \delta'_{jl} \) are given by Theorem 2 for \(\mathbf{S} = \mathbf{Z}_{j}^{ul}/N, \mathbf{D} = \mathbf{I}_N, \) and \(\mathbf{R}_k = \Phi_{lk} \forall k. \)

Remark 3.2: Observe the similarity between the results for MF and BF (MMSE and RZF). The main difference is that in the downlink, all transmit powers are multiplied by the power normalization factors \(\lambda_j \) and the indices \(j, l \) and \(k, m \) are swapped for the interference terms.

Remark 3.3: The expressions of \(\gamma_{jm}^{MMSE} \) and \(\gamma_{jm}^{RZF} \) can be greatly simplified under a less general channel model, e.g., no antenna correlation or Wyner-type models with the same path loss for all interfering UTs [22]. We provide later a special case for which \(\gamma_{jm}^{MMSE} \) and \(\gamma_{jm}^{RZF} \) are given in closed form.

Next, we consider the case when the number of antennas per BS is much larger than the number of UTs per cell, i.e., \(N \gg K \).

Corollary 1: Let \(N \rightarrow \infty \), such that \(K/N \rightarrow 0 \). Denote \(\beta_{jlk} = \lim_{N \rightarrow \infty} \frac{1}{N} \text{tr} \Phi_{jlk} \) whenever the limit exists, and define

\[
\lambda_{j}^{\infty, BF} = \left(\frac{1}{K} \sum_{k=1}^{K} \beta_{jlk} \right)^{-1}
\]

\[
\lambda_{j}^{\infty, RZF} = \left(\frac{1}{K} \sum_{k=1}^{K} \left(\beta_{jlk}^{2} + \beta_{jlk}^{2} \right) \right)^{-1}.
\]

Then,

\[
\gamma_{jm}^{MF} \rightarrow \frac{\beta_{jlm}^{2}}{\sum_{l \neq j} |\beta_{jlm}|^2}
\]

\[
\gamma_{jm}^{BF} \rightarrow \frac{1}{\sum_{l \neq j} \beta_{jlm}^{2}} |\beta_{jlm}|^2
\]

\[
\gamma_{jm}^{MMSE} \rightarrow \frac{\beta_{jlm}^{2}}{\sum_{l \neq j} \beta_{jlm}^{2}} |\beta_{jlm}|^2
\]

\[
\gamma_{jm}^{RZF} \rightarrow \frac{1}{\sum_{l \neq j} \left(\beta_{jlm}^{2} + \beta_{jlm}^{2} \right)} \lambda_{j}^{\infty, RZF} |\beta_{jlm}|^2.
\]
\[
\begin{align*}
\gamma_{\text{MF}} = \frac{1}{\rho_{\text{MF}}} \frac{1}{N} \text{tr} (\Phi_{j,j|m} + \frac{1}{N} \sum_{l,k} \frac{1}{N} \text{tr} R_{l,k} \Phi_{j,j|m} + \sum_{l \neq j} \frac{1}{N} \text{tr} \Phi_{j,l|m})^2 \\
\gamma_{\text{BF}} = \frac{1}{\rho_{\text{BF}}} \frac{1}{N} \text{tr} (\Phi_{j,j|m})^2 \\
\gamma_{\text{MMSE}} = \frac{1}{\rho_{\text{MMSE}}} \frac{1}{N} \text{tr} (\Phi_{j,j|m})^2 \\
\gamma_{\text{RZF}} = \frac{1}{\rho_{\text{RZF}}} \frac{1}{N} \text{tr} (\Phi_{j,j|m})^2 \\
\end{align*}
\]
\[L = 1 + \alpha(L - 1), \quad \nu = \frac{\rho_n K}{1 + \rho_n L}, \quad X = \frac{Z^2}{2^T - Z}, \quad Z = \frac{1 + \delta}{\delta}, \text{ and} \]
\[S = \frac{\varphi}{L} + \frac{K L}{\nu P}. \]

Sketch: Notice that \(\Phi_{jk} = \max\{\imath \{j = l\}, \alpha\} N AA^H \), where \(\imath \{\cdot\} \) is the indicator function, and \(Z_j = K(L - \nu) X AA^H \forall j, l, k \). Using these expressions, one can show after some straightforward but tedious calculus that Theorems 1 and 2 can be given in closed form and that the SINR expressions in Theorems 3–6 can be greatly simplified.

One can make several observations from (28) and (30). First, the asymptotic SINR depends on the transmit SNR \(\rho \) only through the term \(\frac{1}{\nu \rho N} \). Thus, the “effective SNR” \(\rho N \) increases linearly with \(N \). If the number of antennas is doubled, the transmit power can consequently be reduced by a factor two to achieve the same performance. However, if the transmit and the training power are reduced as \(N \) grows, this conclusions fails to hold, as can been seen from the term \(\nu \rho N \). The product of transmit and training power must satisfy \(\lim_{N \to \infty} \rho_n \rho N > 0 \) (if \(\lim_{N \to \infty} P / N > 0 \)). Otherwise the SINR converges to zero as \(N \to \infty \). As already observed in [4], if \(\rho_n = \rho \), the transmit power can be made only inversely proportional to \(\sqrt{N} \). Second, the interference depends mainly on the ratio \(P/K \) (number of DoF per UT) and not directly on \(N \). Thus, interference can only be reduced by the use of additional antennas if the environment provides sufficient scattering. Third, noise, channel estimation errors, and interference vanish if \(N, P \to \infty \) at the same speed, while pilot contamination remains the only performance limitation:

\[\gamma_{\text{MF}}, \gamma_{\text{BF}}, \gamma_{\text{MMSE}}, \gamma_{\text{RZF}} \to \gamma_{\infty} = \frac{1}{\alpha(L - 1)}. \]

We denote by \(R_{\infty} \) the ultimately achievable rate, defined as

\[R_{\infty} = \log_2 \left(1 + \gamma_{\infty} \right) = \log_2 \left(1 + \frac{1}{\alpha(L - 1)} \right). \]

It is interesting that all precoders and detectors achieve the same asymptotic performance limit \(\gamma_{\infty} \). Note that without pilot contamination, i.e., for \(L = 1 \) or \(\alpha = 0 \), the SINR grows without bounds as \(P, N \to \infty \). If \(P \) is fixed but large, the SINR saturates at a smaller value than \(\gamma_{\infty} \). In this case, adding antennas only improves the SNR but does not reduce the multiuser interference. Also MMSE/RZF have a superior performance than MF/BF as \(N \to \infty \).

Before we proceed, let us verify the accuracy of the rate-approximations \(R_{\text{MF}} = \log_2(1 + \gamma_{\text{MF}}) \) and \(R_{\text{MMSE}} = \log_2(1 + \gamma_{\text{MMSE}}) \) as given by Corollaries 2 and 3, respectively, for finite \(N \) and \(K \). In Fig. 2, we depict the ergodic achievable rate \(R_{\text{ym}} \) (13) of an arbitrary UT with MF and MMSE detection as a function of the number of antennas \(N \) for \(K = 10 \) UTs, \(L = 4 \) cells, \(\rho_n = 6 \) dB, \(\rho = 10 \) dB, \(\varphi^d = 1/(\rho N) \), and intercell interference factor \(\alpha = 0.1 \). We compare two different cases: \(P = N \) and \(P = N/3 \). As expected, the performance in the latter scenario is worse due to stronger multiuser interference. Most importantly, our closed-form approximations are almost indistinguishable from the simulation results over the entire range of \(N \). The results for the downlink with MF and RZF look similar and are omitted due to space limitations.

Based on our previous observations, it is justified to speak about a massive MIMO effect whenever the SINR \(\gamma_{jm} \) (in the UL or DL) is close to \(\gamma_{\infty} \), or in other words, whenever noise, channel estimation errors, and interference are small compared to pilot contamination. It becomes evident from (29) and (30) that the number of antennas needed to achieve this effect depends strongly on the system parameters \(P, K, L, \alpha, \rho_n, \) and \(\rho \). In particular, there is no massive MIMO effect without pilot contamination since \(\gamma_{\infty} \to \infty \). Thus, massive MIMO can be seen as a particular operating condition in multi-cellular systems where the performance is ultimately limited by pilot contamination and MF/BF achieve a performance close to this ultimate limit. To make this definition more precise, we say that we operate under massive MIMO conditions if, for some desired “massive MIMO efficiency” \(\eta \in (0, 1) \),

\[R = \log_2(1 + \gamma) \geq \eta R_{\infty} \]

where \(\gamma \) is the SINR in the UL/DL with any detection/precoding scheme. This condition implies that we achieve at least the fraction \(\eta \) of the ultimate performance limit. If we assume that \(\rho_n \gg 1 \), i.e., \(\nu \approx L^{-1} \), the expressions of \(\gamma_{\text{MF}}, \gamma_{\text{BF}}, \gamma_{\text{MMSE}}, \) and \(\gamma_{\text{RZF}} \) in Corollaries 2 and 3 depend on \(P, K, \rho, \) and \(N \) only through the ratio \(P/K \) and the effective SNR \(\rho N \). Thus, for a given set of parameters \(\rho, N, \alpha, L, \) and \(\varphi \), we can easily find the fraction \(P/K \) necessary to satisfy (33).

Figs. 3 and 4 show the necessary DoF per UT \(P/K \) for a given effective SNR \(\rho N \) to achieve a spectral efficiency of \(\eta R_{\infty} \) with either MF/BF (solid lines) or MMSE/RZF (dashed lines). We consider \(L = 4 \) cells, \(\varphi = 1/(\rho N) \), and an intercell interference factor \(\alpha = 0.3 \) and \(\alpha = 0.1 \), respectively. The plots must be understood in the following way: Each curve corresponds to a particular value of \(\eta \). In the region above each curve, the condition (33) is satisfied.

Let us first focus on Fig. 3 with \(\alpha = 0.3 \). For an effective SNR \(\rho N = 20 \) dB (e.g., \(\rho = 0 \) dB and \(N = 100 = 20 \) dB),
we need about $P/K = 90$ DoF per UT with MF/BF to achieve 90% of the ultimate performance R_∞, i.e., $0.9 \times 2.2 \approx 2$ b/s/Hz. If $P \approx N$, only a single UT could be served (Note that this is a simplifying example. Our analysis assumes $K \gg 1$). However, if we had $N = 1000 = 30$ dB antennas, the transmit power ρ could be decreased by 10 dB and 10 UTs could be served with the same performance. At the same operating point, the MMSE/RZF requires only ~ 60 DoF per UT to achieve 90% of the ultimate performance. Thus, the use of MMSE/RZF would allow us to increase the number of simultaneously served UTs by a factor ≈ 1.5. This example also demonstrates the importance of the relation between N and P. In particular, if P saturates for some N, adding more antennas increases the effective SNR but does not reduce the multiuser interference. Thus, the number of UTs which can be

simultaneously supported depends significantly on the radio environment. We can further see that adding antennas shows diminishing returns. This is because the distances between the curves for different values of η grow exponentially fast. Remember that for $\eta = 1$, a ratio of $P/K = \infty$ would be needed. A last observation we can make is that the absolute difference between MF/BF and MMSE/RZF is marginal for small values of η but gets quickly pronounced as $\eta \rightarrow 1$.

Moving to Fig. 4 for $\alpha = 0.1$, we can see that for the same effective SNR $\rho N = 20$ dB and the same number of DoF per UT $P/K = 90$ as in the previous example, only 80% of the ultimate performance are achieved by MF/BF. However, since the intercell interference is significantly smaller compared to the previous example, this corresponds to $0.9 \times 5.1 \approx 4.6$ b/s/Hz. Thus, although we operate further away from the ultimate performance limit, the resulting spectral efficiency is still higher. With MMSE/RZF, only 35 DoF per UT are necessary to achieve the same performance and, consequently, $90/35 \approx 2.5$ times more UTs could be simultaneously served. With decreasing intercell interference (and hence decreasing pilot contamination) the advantages of MMSE/RZF become more and more important.

V. Numerical Results

Let us now validate the accuracy of Theorems 4 and 6 for finite N and K in a more realistic downlink scenario. Simulations for the uplink, i.e., Theorems 3 and 5, are omitted due to space constraints but provide similar results (see Remark 3.2). We consider a hexagonal system with $L = 7$ cells as shown in Fig. 5. The inner cell radius is normalized to one and we assume a distance-based path loss model with path loss exponent $\beta = 3.7$. To allow for reproducibility of our results, we distribute $K = 10$ UTs uniformly on a circle of radius $2/\beta$ around each BS and do not consider shadowing. We further assume a training SNR $\rho_{\text{tr}} = 6$ dB and transmit SNR $\rho_{\text{all}} = 10$ dB. For RZF, we use a regularization factor $\varphi_j^{\text{all}} = 1/\rho_{\text{all}}$ and $Z_j^{\text{all}} = 0$. Average rates are then calculated for the UTs in the center cell.

First, we consider a simple channel model without antenna correlation, i.e., $\mathbf{R}_{jlk} = \mathbf{d}_{jlk}^{-\beta/2} \mathbf{I}_N$, where d_{jlk} is the distance between BS j and the kth UTs in cell l (cf. (2)). For an unlimited number of antennas per UT, the precoding schemes lead respectively to the ultimate average rates 7.2 b/s/Hz (BF) and 7.08 b/s/Hz (RZF) (see Remark 3.4). In Fig. 6, we show the achievable rates under both precoding techniques and their approximations by Theorems 4 and 6 as a function of the number of antennas N. Both results match very well, even for small N. We can observe that RZF leads to significant performance gains over BF as it reduces multiuser interference. For $N = 400$, RZF achieves 82% of the ultimate limit while BF achieves only 65%.

Second, we consider a physical channel model with a fixed number of dimensions P as in [8]. For a uniform linear array, the matrices \mathbf{R}_{jlk} are given as $\mathbf{R}_{jlk} = d_{jlk}^{-\beta/2} [\mathbf{A} \mathbf{0}_{N \times N-P}]$, where $\mathbf{A} = [a(\phi_1) \cdots a(\phi_P)] \in \mathbb{C}^{N \times P}$ is composed of the
steering vectors \(\mathbf{a}(\phi) \in \mathbb{C}^N \) defined as
\[
\mathbf{a}(\phi) = \frac{1}{\sqrt{P}} \left[1, e^{-i2\pi \omega \sin(\phi)}, \ldots, e^{-i2\pi \omega (N-1) \sin(\phi)} \right]^T
\]
where \(\omega \) is the antenna spacing in multiples of the wavelength and \(\phi_p = -\pi/2 + (p-1)\pi/P, \ p = 1, \ldots, P \), are the uniformly distributed angles of transmission. We assume that the physical dimensions \(P \) scale with the number of antennas as \(P = N/2 \) and let \(\omega = 0.3 \). Since \(\frac{1}{2} \text{tr} \mathbf{A} \mathbf{A}^H = 1 \), the ultimately achievable rates under this channel model are equal to those of the previous channel model without antenna correlation. For comparison, we also depict in Fig. 6 the achievable rates and their approximations for the physical channel model. Interestingly, while the shapes of the curves for both precoders are similar to those without antenna correlation, it becomes clear that low rank correlation matrices severely degrade the performance. Note that we have assumed the same correlation matrix \(\mathbf{A} \) for all UTs. In a practical system, however, different UTs will have different correlation matrices, possibly spanning different subspaces. In such a scenario, antenna correlation might have also some positive effects. For a further discussion of this topic, we refer to the very recent work [24].

VI. CONCLUSIONS

We have provided a unified analysis of the UL/DL performance of linear detectors/precoders in non-cooperative multi-cell multi-user TDD systems. Assuming a large system limit, we have derived asymptotically tight approximations of achievable UL/DL-rates under a very general channel model which accounts for imperfect channel estimation, pilot contamination, path loss, and terminal-specific antenna correlation. These approximations were shown to be accurate for realistic system dimensions and enable, consequently, future studies of realistic effects, such as antenna correlation, spacing and aperture, without the need for simulations. Our results are also directly applicable in the context of large distributed antenna systems. For a simplified channel model, we have observed that the performance depends mainly on the physical DoF per UT the channel offers and the effective SNR. Moreover, we have determined how many antennas are needed to achieve \(\eta \% \) of the ultimate performance limit with infinitely many antennas and how many more antennas are needed with MF/BF to achieve MMSE/RZF performance. Simulations for a more realistic system model suggest that MMSE/RZF can achieve the performance of the simple MF/BF schemes with a significantly reduced number of antennas. Since massive MIMO TDD systems are a promising network architecture, it seems necessary to verify the theoretical performance predictions by channel measurements and prototypes.

APPENDIX A

USEFUL LEMMAS

Lemma 1 (Matrix inversion lemma (I) [25, Eq. (2.2)]): Let \(\mathbf{A} \in \mathbb{C}^{N \times N} \) be Hermitian invertible. Then, for any vector \(\mathbf{x} \in \mathbb{C}^N \) and any scalar \(\tau \in \mathbb{C} \) such that \(\mathbf{A} + \tau \mathbf{x} \mathbf{x}^H \) is invertible,
\[
\mathbf{x}^H (\mathbf{A} + \tau \mathbf{x} \mathbf{x}^H)^{-1} = \mathbf{x}^H \mathbf{A}^{-1} \frac{1}{1 + \tau \mathbf{x}^H \mathbf{A}^{-1} \mathbf{x}}.
\]

Lemma 2 (Matrix inversion lemma (II)): Let \(\mathbf{A} \in \mathbb{C}^{N \times N} \) be Hermitian invertible. Then, for any vector \(\mathbf{x} \in \mathbb{C}^N \) and any scalar \(\tau \in \mathbb{C} \) such that \(\mathbf{A} + \tau \mathbf{x} \mathbf{x}^H \) is invertible,
\[
(\mathbf{A} + \tau \mathbf{x} \mathbf{x}^H)^{-1} = \mathbf{A}^{-1} - \mathbf{A}^{-1} \tau \mathbf{x} \mathbf{x}^H \mathbf{A}^{-1} \frac{1}{1 + \tau \mathbf{x}^H \mathbf{A}^{-1} \mathbf{x}}.
\]

Lemma 3 (Rank-1 perturbation lemma [25]): Let \(z < 0 \), \(\mathbf{A} \in \mathbb{C}^{N \times N} \), \(\mathbf{B} \in \mathbb{C}^{N \times N} \) with \(\mathbf{B} \) Hermitian nonnegative definite, and \(\mathbf{v} \in \mathbb{C}^N \). Then,
\[
|\text{tr} ((\mathbf{B} - z \mathbf{I}_N)^{-1} - (\mathbf{B} + \mathbf{v} \mathbf{v}^H - z \mathbf{I}_N)^{-1})\mathbf{A}| \leq \frac{\| \mathbf{A} \|}{|z|}.
\]

Lemma 4 ([26, Lem. B.26], [27, Thm. 3.7],[21, Lem. 12]): Let \(\mathbf{A} \in \mathbb{C}^{N \times N} \) and \(\mathbf{x}, \mathbf{y} \sim \mathcal{CN}(0, \frac{1}{2} \mathbf{I}_N) \). Assume that \(\mathbf{A} \) has uniformly bounded spectral norm (with respect to \(N \))
and that \(x \) and \(y \) are mutually independent and independent of \(A \). Then, for all \(p \geq 1 \),

\[
(i) \quad \mathbb{E} \left[\left| x^H A x - \frac{1}{N} \text{tr} A \right|^p \right] = O \left(\frac{1}{N^p} \right)
\]

\[
(ii) \quad x^H A x - \frac{1}{N} \text{tr} A \xrightarrow{a.s.} 0 \quad N \to \infty
\]

\[
(iii) \quad x^H A y \xrightarrow{a.s.} 0 \quad N \to \infty
\]

\[
(iv) \quad \mathbb{E} \left[(x^H A x)^2 - \left(\frac{1}{N} \text{tr} A \right)^2 \right] \xrightarrow{N \to \infty} 0.
\]

APPENDIX B

PROOFS

Proof of Theorem 4: We start by dividing the denominator and numerator of \(\gamma_{jjm}^{al} \) by \(\frac{1}{N} \).

1) **Signal power:** Straight-forward computations yield to

\[
\frac{1}{N} \lambda_j E \left[\left| \hat{h}^H_{jjm} \hat{h}_{jjm} \right|^2 \right] = \mathbb{E} \left[\frac{1}{N} \sum_k \hat{h}^H_{jjm} \hat{h}_{jjm} \right] = \lambda_j \left(\frac{1}{N} \text{tr} \Phi_{jjm} \right)^2
\]

where \(\lambda_j \triangleq \left(\frac{1}{N} \sum_k \frac{1}{N} \text{tr} \Phi_{jjk} \right)^{-1} \). By Assumption 1 and 2, \(0 < \liminf_N \lambda_j \leq \limsup_N \lambda_j < \infty \) holds.

2) **Interference power:** As a direct consequence of Lemma 4 (i) and the independence of \(\hat{h}_{jjm} \) and \(\hat{h}_{jjm} \),

\[
\frac{\lambda_j}{N} \text{var} \left[h_{jjm}^H \hat{h}_{jjm} \right] = \lambda_j \mathbb{E} \left[\frac{1}{N} \hat{h}_{jjm}^H \hat{h}_{jjm} - \frac{1}{N} \text{tr} \Phi_{jjm} \right]^2 = \lambda_j \mathbb{E} \left[\left[\frac{1}{N} \hat{h}_{jjm}^H \hat{h}_{jjm} - \frac{1}{N} \text{tr} \Phi_{jjm} \right]^2 \right]
\]

For the remaining terms, we have by (7)

\[
\frac{1}{N} \lambda_j E \left[\left| \hat{h}_{jjm}^H \hat{h}_{llk} \right|^2 \right] = \lambda_j \mathbb{E} \left[\frac{1}{N^2} \left| \hat{h}_{jjm}^H \right|^2 \mathbb{R}_{llk}^H \mathbb{Q}_{llk} \mathbb{R}_{llk} + \frac{N}{N^2} \hat{h}_{llk}^H \hat{h}_{llk} \right]^2
\]

\[
= \lambda_j \mathbb{E} \left[\left| \frac{1}{N} \hat{h}_{jjm}^H \mathbb{R}_{llk}^H \mathbb{Q}_{llk} \mathbb{R}_{llk} + \frac{1}{N} \hat{h}_{llk} \hat{h}_{llk} \right|^2 \right]
\]

\[
= \lambda_j \mathbb{E} \left[\frac{1}{N} \hat{h}_{jjm}^H \mathbb{R}_{llk}^H \mathbb{Q}_{llk} \mathbb{R}_{llk} + \frac{1}{N} \hat{h}_{llk} \hat{h}_{llk} \right]^2.
\]

By Lemma 4 (iv),

\[
\mathbb{E} \left[\left| \frac{1}{N} \hat{h}_{jjm}^H \mathbb{R}_{llk}^H \mathbb{Q}_{llk} \mathbb{R}_{llk} \right|^2 \right] - \frac{1}{N} \text{tr} \Phi_{jjm} \xrightarrow{N \to \infty} 0.
\]

Combining all results yields

\[
\sum_{(l,k) \neq (j,m)} \frac{1}{N} \lambda_j E \left[\left| h_{jjm}^H \hat{h}_{llk} \right|^2 \right] - \frac{1}{N} \sum_{l,k} \lambda_j \mathbb{R}_{llk} \left[\frac{1}{N} \text{tr} \Phi_{jjm} \right]^2 \xrightarrow{N \to \infty} 0.
\]

Note that we have neglected the terms \(\frac{1}{N} \mathbb{R}_{llk} \) which appear only \(L - 1 \) times and therefore vanish asymptotically. Moreover, we have added the single term \(\lambda_j \mathbb{E} \left[\frac{1}{N} \text{tr} \Phi_{jjm} \right]^2 \) which is also negligible for large \(N \). Replacing the asymptotic approximations for the useful signal power and the interference power in (15) finally yields

\[
\gamma_{jjm}^{al} = \frac{\lambda_j \left(\frac{1}{N} \text{tr} \Phi_{jjm} \right)^2}{\frac{1}{\mu_N^2} + \frac{1}{N} \sum_{l,k} \lambda_j \mathbb{R}_{llk} + \frac{1}{N} \sum_{j \neq j} \lambda_j \mathbb{R}_{jjk} \left[\frac{1}{N} \text{tr} \Phi_{jjm} \right]^2} \xrightarrow{N \to \infty} 0.
\]

Proof of Theorem 6: Define the following matrices for \(j = 1, \ldots, L \) and \(k = 1, \ldots, K \):

\[
\Sigma_j = \left(\hat{H}_{jj} \hat{H}_{jj}^H + N \varphi_{jj}^d I_N \right)^{-1}
\]

\[
\Sigma_{jk} = \left(\hat{H}_{jj} \hat{H}_{jj}^H - \hat{h}_{jjk} \hat{h}_{jjk}^H + N \varphi_{jj}^d I_N \right)^{-1}
\]

1) **Signal power:** We divide the denominator and numerator of \(\gamma_{jjm}^{al} \) by \(\frac{1}{N} \). Thus,

\[
\sqrt{\frac{\lambda_j}{N}} h_{jjm}^H w_{jjm} = \sqrt{\frac{\lambda_j}{N}} h_{jjm}^H \Sigma_j \hat{h}_{jjm} \]

\[
\begin{aligned}
(a) & \quad \sqrt{\lambda_j} \mathbb{E} \left[\frac{K}{\text{tr} \Sigma_j \hat{h}_{jjm}^H \hat{h}_{jjm}^H} \right] \xrightarrow{N \to \infty} \mathbb{E} \left[\frac{K}{\text{tr} \Sigma_j \hat{h}_{jjm}^H \hat{h}_{jjm}^H} \right] \\
(b) & \quad \sqrt{\lambda_j} \mathbb{E} \left[\frac{K}{\text{tr} \Sigma_j - \text{tr} (Z_j^d + N \varphi_{jj}^d I_N) \Sigma_j^2} \right] \xrightarrow{N \to \infty} \mathbb{E} \left[\frac{K}{\text{tr} \Sigma_j - \text{tr} (Z_j^d + N \varphi_{jj}^d I_N) \Sigma_j^2} \right] \\
(c) & \quad \sqrt{\lambda_j} \mathbb{E} \left[\frac{K}{\text{tr} \Sigma_j - \text{tr} (Z_j^d + N \varphi_{jj}^d I_N) \Sigma_j^2} \right] \xrightarrow{N \to \infty} \mathbb{E} \left[\frac{K}{\text{tr} \Sigma_j - \text{tr} (Z_j^d + N \varphi_{jj}^d I_N) \Sigma_j^2} \right] \\
(d) & \quad \sqrt{\lambda_j} \mathbb{E} \left(\frac{K}{\text{tr} \Sigma_j - \text{tr} (Z_j^d + N \varphi_{jj}^d I_N) \Sigma_j^2} \right) \xrightarrow{N \to \infty} \mathbb{E} \left(\frac{K}{\text{tr} \Sigma_j - \text{tr} (Z_j^d + N \varphi_{jj}^d I_N) \Sigma_j^2} \right)
\end{aligned}
\]

where (a) follows from Lemma 1, (b) follows from Lemma 4 (ii), Lemma 3, and Theorem 1 applied to the \(h_{jjm}^H \Sigma_j \hat{h}_{jjm} \), and (c) results from Theorem 1 applied to \(\text{tr} \Sigma_j \) and Theorem 2 applied to \(\text{tr} (Z_j^d + N \varphi_{jj}^d I_N) \Sigma_j^2 \). Note that both theorems do not only imply almost sure

\[6\] We denote \(a_n \asymp b_n \) the equivalence relation \(a_n - b_n \xrightarrow{n \to \infty} 0 \) for two infinite sequences \(a_n \) and \(b_n \).

\[7\] Note that these are standard steps in proofs using large random matrix theory. Details can be found, e.g., in [20] or [27].
convergence but also convergence in the mean. In the last step, we have used the definitions \(\delta_{jm} = \frac{1}{N} \mathrm{tr} R_{jjm} T_j \) and
\[
\lambda_j = \frac{K}{N} \left(\frac{1}{N} \mathrm{tr} T_j - \frac{1}{N} \mathrm{tr} \left(\frac{Z_j^d}{N} + \psi_j I_N \right) T_j \right)^T .
\]
By the dominated convergence theorem [18] and the continuous mapping theorem [19], it is straightforward to show that
\[
\frac{\lambda_j}{N} \mathbb{E} \left[\left| h_{jjm}^H \Sigma_{jjm} h_{jjm} \right|^2 - \lambda_j \right] \xrightarrow{N \to \infty} 0 . \tag{43}
\]

2) Interference power: Define the following quantities:
\[
a = \hat{h}_{jjm}^H \Sigma_{jjm} \hat{h}_{jjm} , \tag{44}
a = \mathbb{E} \left[h_{jjm}^H \Sigma_{jjm} h_{jjm} \right] \tag{45}
b = \hat{h}_{jjm}^H \Sigma_{jjm} \hat{h}_{jjm} . \tag{46}
\]
By Lemma 1, we have \(0 \leq a, \bar{a} \leq 1 \). Moreover, \(\mathbb{E} [a] = 0 \) and \(\mathbb{E} [ab] = \mathbb{E} [ab^*] = 0 \). Thus,
\[
\var \left[h_{jjm}^H \Sigma_{jjm} \hat{h}_{jjm} \right] = \mathbb{E} \left[|a + b - \bar{a}|^2 \right] = \mathbb{E} \left[(a - \bar{a})(a + \bar{a}) \right] + \mathbb{E} \left[|b|^2 \right]
\leq 2 \mathbb{E} \left[|a - \bar{a}| \right] + \mathbb{E} \left[|b|^2 \right] . \tag{47}
\]
We have shown in (42) \(b \) that \(a - \frac{\delta_{jm}}{1 + \delta_{jm}} \xrightarrow{N \to \infty} 0 \). Since \(\lambda_j \bar{a} \) are bounded, this implies by the dominated convergence theorem that also \(\mathbb{E} \left[|a - \bar{a}| \right] \xrightarrow{N \to \infty} 0 \). Moreover, one can show that \(\mathbb{E} \left[|b|^2 \right] \leq \frac{1}{N^2} \| R_{jjm} \| ^2 \xrightarrow{N \to \infty} 0 \). Thus, we have from (47)
\[
\frac{1}{N} \lambda_j \var \left[h_{jjm}^H \Sigma_{jjm} \hat{h}_{jjm} \right] \xrightarrow{N \to \infty} 0 . \tag{48}
\]
Consider now the terms \(|h_{jjm}^H w_{lk}|^2 \):
\[
|h_{jjm}^H w_{lk}|^2 \xrightarrow{(a)} \frac{\hat{h}_{lk} \Sigma_{lk} \hat{h}_{jk} \Sigma_{lk} \hat{h}_{jk} \Sigma_{lk} \hat{h}_{jk}}{\left(1 + \hat{h}_{lk} \Sigma_{lk} \hat{h}_{jk} \right)^2} = \frac{1}{(1 + \delta_{lk})^2} \left| \var \left[\hat{h}_{lk} \Sigma_{lk} \hat{h}_{jk} \hat{h}_{jk} \Sigma_{lk} \hat{h}_{jk} \right] \right|^2 , \tag{49}
\]
where \((a) \) is due to Lemma 1, \((b) \) follows from Lemmas 4, 3, Theorem 1, and where we have used the definitions \(\delta_{lk} = \frac{1}{N} \mathrm{tr} \Phi_{llk} T_l \) and \(\bar{\delta}_{lm} = \frac{1}{N} \mathrm{tr} \Phi_{llm} T_l \). In order to treat the terms for \(\kappa \neq m \) further, we need the following identity from Lemma 2:
\[
\Sigma_{lk} = \Sigma_{lk} - \frac{\Sigma_{lk} \hat{h}_{lm} \hat{h}_{lk} \Sigma_{lk} \hat{h}_{lm} \hat{h}_{lk}}{1 + \hat{h}_{lk} \Sigma_{lk} \hat{h}_{lk}} , \tag{50}
\]
where
\[
\Sigma_{lk} = \left(\hat{H}_{jj} \hat{H}_{jj}^H - \hat{h}_{jjk} \hat{h}_{jjk}^H - \hat{h}_{jjm} \hat{h}_{jjm}^H + Z_j^d + N \psi_j I_N \right)^{-1} . \tag{51}
\]
Note that \(\Sigma_{km} \) is independent of \(h_{jkm} \) while \(\Sigma_{lk} \) is not. Using (50), we can write
\[
\begin{align*}
& h_{jjm}^H \Sigma_{lk} \Phi_{llk} \Sigma_{lk} h_{jjm} \\
& = h_{jjm}^H \Sigma_{lk} \Phi_{llk} \Sigma_{lk} h_{jjm} \\
& + \left(h_{jjm}^H \Sigma_{lk} \hat{h}_{lm} \hat{h}_{lm}^H \Sigma_{lk} \Phi_{llk} \Sigma_{lk} \hat{h}_{lm} \hat{h}_{lm}^H \right. \left. \left(1 + \hat{h}_{lk} \Sigma_{lk} \hat{h}_{lk} \right) \right)^2 \\
& - 2 \Re \left(h_{jjm}^H \Sigma_{lk} \hat{h}_{lm} \hat{h}_{lm}^H \Sigma_{lk} \Phi_{llk} \Sigma_{lk} \hat{h}_{lm} \hat{h}_{lm}^H \right) \right) . \tag{52}
\end{align*}
\]
As already shown above, we have \(\hat{h}_{jjm}^H \Sigma_{lk} \hat{h}_{lm} \hat{h}_{lm}^H \Sigma_{lk} h_{jjm} \equiv \delta_{jm} \) and \(h_{jjm}^H \Sigma_{lk} \hat{h}_{lm} \hat{h}_{lm}^H \Sigma_{lk} h_{jjm} \equiv \delta_{jm} \). From Lemmas 4, 3 and Theorem 2, we can similarly obtain
\[
\begin{align*}
& h_{jjm}^H \Sigma_{lk} \Phi_{llk} \Sigma_{lk} h_{jjm} \xrightarrow{N \to \infty} \frac{1}{N^2} \mathrm{tr} R_{jjm} T_j^T \\
& h_{jjm}^H \Sigma_{lk} \Phi_{llk} \Sigma_{lk} h_{jjm} \xrightarrow{N \to \infty} \frac{1}{N^2} \mathrm{tr} R_{jjm} T_j^T \tag{53}
\end{align*}
\]
where \(T_j^T = T_j^d \) and \(\delta_{11} = \theta_{11} \cdots \theta_{1k} T_1 = \delta^d (\varphi_j^d \cdots \varphi_j^d) \) are given by Theorem 2 for \(S = Z_j^d / N, \Theta = \Phi_{llk}, D = I_N \), and \(R_k = \Phi_{llk} \) for all \(k \). Combining the last results yields to
\[
\begin{align*}
& h_{jjm}^H \Sigma_{lk} \Phi_{llk} \Sigma_{lk} h_{jjm} \xrightarrow{N \to \infty} \frac{1}{N^2} \mathrm{tr} R_{jjm} T_j^T \\
& - 2 \Re \left(\delta_{ljm} \theta_{ljm} \right) \left(1 + \delta_{jm} \right) - |\delta_{ljm}|^2 \delta_{ljm} \xrightarrow{N \to \infty} \mu_{ljm} N . \tag{56}
\end{align*}
\]
Note now that
\[
\sum_{(l,k) \neq (j,m)} \frac{\lambda_j}{N} |h_{jjm}^H w_{lk}|^2 \leq \sum_l \frac{\lambda_l}{N} h_{jjm}^H \Sigma_{jkm} \hat{h}_{jkm} \Sigma_{jkm} h_{jjm} \leq \sum_l \frac{\lambda_l}{N} h_{jjm}^H \Sigma_{jkm} h_{jjm} . \tag{57}
\]
Since \(h_{jjm}^H \Sigma_{lk} h_{jjm} \xrightarrow{N \to \infty} \frac{1}{N} \mathrm{tr} R_{jjm} T_j \), \(\mathbb{E} \left[h_{jjm}^H \Sigma_{lk} h_{jjm} \right] - \frac{1}{N} \mathrm{tr} R_{jjm} T_j \to 0 \) by Lemmas 4, 3 and Theorem 1, and \(\frac{1}{N} \mathrm{tr} R_{jjm} T_j \leq \frac{1}{N} \| R_{jjm} \| \), we have by dominated convergence arguments
\[
\begin{align*}
& \sum_{(l,k) \neq (j,m)} \frac{\lambda_l}{N} \mathbb{E} \left[|h_{jjm}^H w_{lk}|^2 \right] - \sum_{l,k} \frac{\lambda_l}{N} \left(1 + \delta_{lk} \right)^2 \xrightarrow{N \to \infty} 0 \\
& - \sum_{l \neq j} \frac{\lambda_j}{N} \left(1 + \delta_{jm} \right)^2 \xrightarrow{N \to \infty} 0 . \tag{58}
\end{align*}
\]
where we have also subtracted the asymptotically negligible term \(\frac{\lambda_j}{N} \left(1 + \delta_{jm} \right)^2 \). Combining (43), (48), and (58) concludes the proof. ■

References

Jakob Hoydis (S’08–M’12) received the diploma degree (Dipl.-Ing.) in electrical engineering and information technology from RWTH Aachen University, Germany, and the Ph.D. degree from Supelec, Gif-sur-Yvette, France, in 2008 and 2012, respectively. Since May 2012, he is a research engineer at Bell Laboratories, Alcatel-Lucent, Stuttgart, Germany. His research interests are in the area of large random matrix theory and information theory and their applications to wireless communications.

Stephan ten Brink (S’97–SM’11) received the Dipl.-Ing. degree in electrical engineering and a Dr.-Ing. degree from the University of Stuttgart, Germany, in 1997 and 2000, respectively. From 2000 to 2003, he was with the Wireless Research Laboratory, Bell Laboratories, Lucent Technologies, Holmdel, New Jersey, conducting research on channel coding for multiple-antenna systems. From 2003 to 2010, he was with Realtek Semiconductor Corp., Irvine, California, developing ASIC solutions for wireless LAN and ultra-wideband systems. Since April 2010, he has been with Bell Laboratories, Alcatel-Lucent, Stuttgart, Germany, where he heads the Wireless Physical Layer Research Department. His research interests include multiple-antenna communications and channel coding for wireless and optical systems.

M´erouane Debbah (S’01–A’03–M’04–SM’08) was born in Madrid, Spain. He entered the Ecole Normale Supérieure de Cachan (France) in 1996 where he received his M.Sc. and Ph.D. degrees respectively in 1999 and 2002. From 1999 to 2002, he worked for Motorola Labs on Wireless Local Area Networks and prospective fourth generation systems. From 2002 until 2003, he was appointed Senior Researcher at the Vienna Research Center for Telecommunications (FTW) (Vienna, Austria). From 2003 until 2007, he joined the Mobile Communications department of the Institut Eurecom (Sophia Antipolis, France) as an Assistant Professor. He is presently a Professor at Supelce, Gif-sur-Yvette, France, holder of the Alcatel-Lucent Chair on Flexible Radio. His research interests are in information theory, signal processing, and wireless communications. M´erouane Debbah is the recipient of the “Mario Boella” prize award in 2005, the 2007 General Symposium IEEE GLOBECOM best paper award, the WiOpt 2009 best paper award, the 2010 Newcom+ best paper award, as well as the Valuetools 2007, Valuetools 2008, and CrownCom 2009 best student paper awards. He is a WWRF fellow. In 2011, he received the IEEE Glavieux Prize Award. He is the co-founder of the Live Video Network Ximinds (http://www.ximinds.com).