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Massive MIMO in the UL/DL of Cellular
Networks: How Many Antennas Do We Need?
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Abstract—We consider the uplink (UL) and downlink (DL)
of non-cooperative multi-cellular time-division duplexing (TDD)
systems, assuming that the number N of antennas per base
station (BS) and the number K of user terminals (UTs) per cell
are large. Our system model accounts for channel estimation,
pilot contamination, and an arbitrary path loss and antenna
correlation for each link. We derive approximations of achievable
rates with several linear precoders and detectors which are
proven to be asymptotically tight, but accurate for realistic system
dimensions, as shown by simulations. It is known from previous
work assuming uncorrelated channels, that as N → ∞ while K is
fixed, the system performance is limited by pilot contamination,
the simplest precoders/detectors, i.e., eigenbeamforming (BF) and
matched filter (MF), are optimal, and the transmit power can
be made arbitrarily small. We analyze to which extent these
conclusions hold in the more realistic setting where N is not
extremely large compared to K. In particular, we derive how
many antennas per UT are needed to achieve η% of the ultimate
performance limit with infinitely many antennas and how many
more antennas are needed with MF and BF to achieve the
performance of minimum mean-square error (MMSE) detection
and regularized zero-forcing (RZF), respectively.

Index Terms—massive MIMO, time-division duplexing, chan-
nel estimation, pilot contamination, large system analysis, large
random matrix theory, linear precoding, linear detection

I. INTRODUCTION

VERY large multiple-input multiple-output (MIMO) or
“massive MIMO” time-division duplexing (TDD) sys-

tems [1], [2] are currently investigated as a novel cellular
network architecture with several attractive features: First, the
capacity can be theoretically increased by simply installing
additional antennas to existing cell sites. Thus, massive MIMO
provides an alternative to cell-size shrinking, the traditional
way of increasing the network capacity [3]. Second, large
antenna arrays can potentially reduce uplink (UL) and down-
link (DL) transmit powers through coherent combining and an
increased antenna aperture [4]. This aspect is not only relevant
from a business point of view but also addresses environmental
as well as health concerns related to mobile communications
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[5], [6]. Third, if channel reciprocity is exploited, the overhead
related to channel training scales linearly with the number K
of user terminals (UTs) per cell and is independent of the
number N of antennas per base station (BS). Consequently,
additional antennas do not increase the feedback overhead and,
therefore, “always help” [7]. Fourth, if N ≫ K, the simplest
linear precoders and detectors are optimal, thermal noise,
interference, and channel estimation errors vanish, and the
only remaining performance limitation is pilot contamination
[1], i.e., residual interference which is caused by the reuse of
pilot sequences in adjacent cells.

The features described above are based on several crucial
but optimistic assumptions about the propagation conditions,
hardware implementations, and the number of antennas which
can be deployed in practice. Therefore, recent papers study
massive MIMO under more realistic assumptions, e.g., a phys-
ical channel model with a finite number of degrees of freedom
(DoF) [8] or constant-envelope transmissions with per-antenna
power constraints [9]. Also first channel measurements with
large antenna arrays were reported in [10], [11], [12].

In this work, we provide a unified performance analysis of
the UL and DL of non-cooperative multi-cell TDD systems.
We consider a realistic system model which accounts for
imperfect channel estimation, pilot contamination, antenna
correlation, and path loss. Assuming that N and K are
large, we derive asymptotically tight approximations of the
achievable rates with several linear precoders/detectors, i.e.,
eigenbeamforming (BF) and regularized zero-forcing (RZF)
in the DL, matched filter (MF) and minimum mean-square
error detector (MMSE) in the UL. These approximations
are easy to compute and shown to be accurate for realistic
system dimensions. We then distinguish massive MIMO from
“classical” MIMO as a particular operating condition of cellu-
lar networks where multiuser interference, channel estimation
errors, and noise have a negligible impact compared to pilot
contamination. If this condition is satisfied or not depends on
several system parameters, such as the number of UTs per DoF
the channel offers (we denote by DoF the rank of the antenna
correlation matrices which might be smaller than N ), the
number of antennas per BS, the signal-to-noise ratio (SNR),
and the path loss. We further study how many antennas per UT
are needed to achieve η% of the ultimate performance limit
with infinitely many antennas and how many more antennas
are needed with BF/MF to achieve RZF/MMSE performance.
Our simulations suggest that in certain scenarios, RZF/MMSE
can perform as well as BF/MF with almost one order of
magnitude fewer antennas.
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Fig. 1. In each of the L cells is one BS, equipped with N antennas, and K
single-antenna UTs. We assume channel reciprocity, i.e., the downlink channel
hH
jlk is the Hermitian transpose of the uplink channel hjlk .

The paper is organized as follows: In Section II, we describe
the system model and derive achievable UL and DL rates
with linear detectors and precoders. Section III contains our
main technical results where we derive asymptotically tight
approximations of these rates. In Section IV, we apply the
asymptotic results to a simplified system model which leads
to concise closed-form expressions of the achievable rates.
This allows us to propose a precise definition of “massive”
MIMO and to investigate if sub-optimal signal processing can
be compensated for by the use of more antennas. We present
some numerical results in Section V before we conclude the
paper in Section VI. All proofs are deferred to the appendix.

Notations: Boldface lower and upper case symbols represent
vectors and matrices, respectively (IN is the size-N iden-
tity matrix). The trace, transpose, and Hermitian transpose
operators are denoted by tr (·), (·)T, and (·)H, respectively.
The spectral norm of a matrix A is denoted by ∥A∥. We
use CN (m,R) to denote the circular symmetric complex
Gaussian distribution with mean m and covariance matrix
R. E [·] denotes the expectation operator. limN stands for
limN→∞.

II. SYSTEM MODEL

Consider a multi-cellular system consisting of L > 1
cells with one BS and K UTs in each cell, as schematically
shown in Fig. 1. The BSs are equipped with N antennas,
the UTs have a single antenna. We assume that all BSs and
UTs are perfectly synchronized and operate a TDD protocol
with universal frequency reuse. We consider transmissions
over flat-fading channels on a single frequency band or sub-
carrier. Extensions to multiple sub-carriers, different numbers
of antennas at the BSs, or different numbers of UTs in each
cell are straightforward.

A. Uplink

The received base-band signal vector yul
j ∈ CN at BS j at

a given time instant reads

yul
j =

√
ρul

L∑
l=1

Hjlx
ul
l + nul

j (1)

where Hjl = [hjl1 · · ·hjlK ] ∈ CN×K , hjlk ∈ CN

is the channel from UT k in cell l to BS j,
xul
l =

[
xul
l1 · · ·xul

lK

]T ∼ CN (0, IK), with xul
lk the transmit

signal of UT k in cell l, nul
j ∼ CN (0, IN ) is a noise vector,

and ρul > 0 denotes the uplink SNR. We model the channel
vectors hjlk as

hjlk = R̃jlkvjlk (2)

where Rjlk
△
= R̃jlkR̃

H
jlk ∈ CN×N are deterministic and

vjlk ∼ CN (0, IN ) are independent fast-fading channel vec-
tors. Our channel model is very versatile as it allows us to
assign a different antenna correlation to each channel vector.
This is especially important for large antenna arrays with a
significant amount of antenna correlation due to either insuf-
ficient antenna spacing or a lack of scattering. The channel
model is also valid for distributed antenna systems since we
can assign a different path loss to each antenna. Moreover,
(2) can represent a physical channel model with a fixed
number of dimensions or angular bins P as in [8], by letting
R̃jlk =

√
ℓjlk [A 0N×N−P ], where A ∈ CN×P , 0N×N−P

is the N × (N −P ) zero matrix, and ℓjlk denotes the inverse
path loss from UT k in cell l to BS j.

B. Downlink

The received signal ydl
jm ∈ C of the mth UT in the jth cell

is given as

ydl
jm =

√
ρdl

L∑
l=1

hH
ljmsl + ndl

jm (3)

where sl ∈ CN is the transmit vector of BS l, ndl
jm ∼ CN (0, 1)

is receiver noise, and ρdl > 0 denotes the downlink SNR. We
assume channel reciprocity, i.e., the downlink channel hH

ljm

is the Hermitian transpose of the uplink channel hljm. The
transmit vector sl is given as

sl =
√
λl

K∑
k=1

wlkx
dl
lk =

√
λlWlx

dl
l (4)

where Wl = [wl1 · · ·wlK ] ∈ CN×K is a precoding matrix
and xl =

[
xdl
l1 · · ·xdl

lK

]T ∈ CK ∼ CN (0, IK) contains the
data symbols for the K UTs in cell l. The parameter λl

normalizes the average transmit power per UT of BS l to
E
[
ρdl
K sHl sl

]
= ρdl, i.e.,

λl =
1

E
[
1
K trWlWH

l

] . (5)

C. Channel estimation

During a dedicated uplink training phase, the UTs in each
cell transmit mutually orthogonal pilot sequences which allow
the BSs to compute estimates Ĥjj of their local channels
Hjj . The same set of orthogonal pilot sequences is reused
in every cell so that the channel estimate is corrupted by
pilot contamination from adjacent cells [1]. After correlating
the received training signal with the pilot sequence of UT k,
the jth BS estimates the channel vector hjjk based on the
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observation ytr
jk ∈ CN , given as1

ytr
jk = hjjk +

∑
l ̸=j

hjlk +
1

√
ρtr

ntr
jk (6)

where ntr
jk ∼ CN (0, IN ) and ρtr > 0 is the effective training

SNR. In general, ρtr depends on the pilot transmit power and
the length of the pilot sequences. Here, we assume ρtr to be a
given parameter. The MMSE estimate ĥjjk of hjjk is given
as [13]

ĥjjk = RjjkQjky
tr
jk

= RjjkQjk

(∑
l

hjlk +
1

√
ρtr

ntr
jk

)
(7)

which can be shown to be distributed as ĥjjk ∼ CN (0,Φjjk),
where we define

Φjlk = RjjkQjkRjlk , ∀j, l, k (8)

Qjk =

(
1

ρtr
IN +

∑
l

Rjlk

)−1

, ∀j, k. (9)

Invoking the orthogonality property of the MMSE es-
timate [13], we can decompose the channel hjjk as
hjjk = ĥjjk + h̃jjk, where h̃jjk ∼ CN (0,Rjjk −Φjjk) is
the uncorrelated estimation error (which is also statistically
independent of ĥjjk due to the joint Gaussianity of both
vectors).

D. Achievable uplink rates with linear detection

We consider linear single-user detection, where the jth BS
estimates the symbol xul

jm of UT m in its cell by computing
the inner product between the received vector yul

j and a linear
filter rjm ∈ CN . Two particular filters are of practical interest,
namely the matched filter rMF

jm and the MMSE detector rMMSE
jm ,

which we define respectively as

rMF
jm = ĥjjm (10)

rMMSE
jm =

(
ĤjjĤ

H
jj + Zul

j +Nφul
j IN

)−1

ĥjjm (11)

where φul
j > 0 and Zul

j ∈ CN×N is an arbitrary Hermitian
nonnegative definite matrix. This formulation of rMMSE

jm allows
us to treat φul

j and Zul
j as design parameters which could be

optimized. One could choose for example φul
j = 1

ρulN
and Zul

j

to be the covariance matrix of the intercell interference and
the channel estimation errors, i.e.,

Zul
j = E

H̃jjH̃
H
jj +

∑
l ̸=j

HjlH
H
jl


=
∑
k

(Rjjk −Φjjk) +
∑
l ̸=j

∑
k

Rjlk. (12)

1For an integer variable s taking values in a set S, we use
∑

s to denote
the summation over all s ∈ S and

∑
s ̸=j to denote the summation over

all s ∈ S \ {j}. Similarly, let s′ be another integer variable taking values
in the set S′, we denote by

∑
(s,s′ )̸=(j,j′) the summation over all tuples

(s, s′) ∈ S × S′ \ {(j, j′)}.

Using a standard bound based on the worst-case uncorre-
lated additive noise [14] yields the ergodic achievable uplink
rate Rul

jm of UT m in cell j:

Rul
jm = E

[
log2

(
1 + γul

jm

)]
(13)

where the associated signal-to-interference-plus-noise ratio
(SINR) γul

jm is given by (14) on the top of the next page
and where we have used E [·|·] to denote the conditional
expectation operator. We will denote by γMF

jm and γMMSE
jm the

SINR with MF and MMSE detection, respectively.

E. Achievable downlink rates with linear precoding

Since the UTs do not have any channel estimate, we provide
an ergodic achievable rate based on the techniques developed
in [15]. To this end, we decompose the received signal ydl

jm

as

ydl
jm =

√
ρdlλjE

[
hH
jjmwjm

]
xdl
jm

+
√

ρdlλj

(
hH
jjmwjm − E

[
hH
jjmwjm

])
xdl
jm

+
∑

(l,k)̸=(j,m)

√
ρdlλlh

H
ljmwlkx

dl
lk + ndl

jm (16)

and assume that the average effective channels√
λjE

[
hH
jjmwjm

]
can be perfectly learned at the UTs.

Thus, an ergodic achievable rate Rdl
jm of UT m in cell j is

given as [15, Theorem 1]

Rdl
jm = log2

(
1 + γdl

jm

)
(17)

where the associated SINR γdl
jm is given by (15) on top of the

next page.2

We consider two different linear precoders Wj of practical
interest, namely eigenbeamforming (BF) WBF

j and regularized
zero-forcing (RZF) WRZF

j , which we define respectively as

WBF
j = Ĥjj (18)

WRZF
j =

(
ĤjjĤ

H
jj + Zdl

j +Nφdl
j IN

)−1

Ĥjj (19)

where φdl
j > 0 is a regularization parameter and Zdl

j ∈ CN×N

is an arbitrary Hermitian nonnegative definite matrix. As the
choice of Zdl

j and φdl
j is arbitrary, they could be further

optimized (see, e.g., [15, Theorem 6]). This is outside the
scope of this paper and left to future work. We will denote by
γBF
jm and γRZF

jm the SINR with BF and RZF, respectively.
Remark 2.1: Under a block-fading channel model with co-

herence time T , one could account for the rate loss due to
channel training by considering the net ergodic achievable
rates κ(1− τ/T )Rul

jm and (1− κ)(1− τ/T )Rdl
jm for a given

training length τ ∈ [K,T ] and some κ ∈ [0, 1] which
determines the fraction of the remaining time used for uplink
transmissions.

2We denote by var [x]
△
= E[(x− E[x]) (x− E[x])H] for some random

variable x.
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γul
jm =

∣∣∣rHjmĥjjm

∣∣∣2
E
[
rHjm

(
1
ρul
IN + h̃jjmh̃H

jjm − hjjmhH
jjm +

∑
l HjlHH

jl

)
rjm

∣∣∣ Ĥjj

] (14)

γdl
jm =

λj

∣∣E [hH
jjmwjm

]∣∣2
1
ρdl

+ λjvar
[
hH
jjmwjm

]
+
∑

(l,k)̸=(j,m) λlE
[∣∣∣hH

ljmwlk

∣∣∣2] (15)

III. ASYMPTOTIC ANALYSIS

As the ergodic achievable rates Rul
jm and Rdl

jm with both
types of detectors and precoders are difficult to compute for
finite system dimensions, we consider the large system limit,
where N and K grow infinitely large while keeping a finite
ratio K/N . This is in contrast to [1] where the authors assume
that the number of UTs remains fixed while the number of
antennas grows without bound. We will retrieve the results of
[1] as a special case. In the following, the notation “N → ∞”
will refer to K,N → ∞ such that lim supN K/N < ∞.
From now on, all vectors and matrices must be understood as
sequences of vectors and matrices of growing dimensions. For
the sake of simplicity, their dependence on N and K is not
explicitly shown. The large system limit implicitly assumes
that the coherence time of the channel scales linearly with
K (to allow for orthogonal pilot sequences of the UTs in a
cell). However, as we use the asymptotic analysis only as a
tool to provide tight approximations for finite N,K, this does
not pose any problem.3 In a realistic deployment, one could
expect BSs equipped with several hundred antennas serving
each tens of UTs simultaneously [1].

In what follows, we will derive deterministic approxima-
tions γ̄ul

jm (γ̄dl
jm) of the SINR γul

jm (γdl
jm) with the MF and the

MMSE detector (BF and RZF precoder), respectively, such
that

γul
jm − γ̄ul

jm
a.s.−−−−→

N→∞
0, γdl

jm − γ̄dl
jm −−−−→

N→∞
0 (20)

where “ a.s.−−−−→
N→∞

” denotes almost sure convergence. One can
then show by the dominated convergence [18] and the con-
tinuous mapping theorem [19], respectively, that (20) implies
that

Rul
jm − log2

(
1 + γ̄ul

jm

)
−−−−→
N→∞

0

Rdl
jm − log2

(
1 + γ̄dl

jm

)
−−−−→
N→∞

0. (21)

These results must be understood in the way that, for each
given set of system parameters N and K, we provide approx-
imations of the SINR and the associated rates which become
increasingly tight as N and K grow. We will show later by
simulations that these approximations are very accurate for
realistic system dimensions. As we make limiting considera-
tions, we assume that the following conditions hold:

A 1: lim supN∥Rjlk∥ < ∞ ∀j, l, k

3Note that similar assumptions have been made in [16], [17].

A 2: lim infN
1
N trRjlk > 0 ∀j, l, k

A 3: lim supN∥ 1
NZul

j ∥ < ∞, lim supN∥ 1
NZdl

j ∥ < ∞ ∀j

Before we continue, we recall two related results of large
random matrix theory which will be required for the asymp-
totic performance analysis of the MMSE detector and the RZF
precoder.

Theorem 1 ([20, Theorem 1]): Let D ∈ CN×N and
S ∈ CN×N be Hermitian nonnegative definite and let
H ∈ CN×K be random with independent column vectors
hk ∼ CN

(
0, 1

NRk

)
. Assume that D and the matrices Rk,

k = 1, . . . ,K, have uniformly bounded spectral norms (with
respect to N ). Then, for any ρ > 0,

1

N
trD

(
HHH + S+ ρIN

)−1 − 1

N
trDT(ρ)

a.s.−−−−→
N→∞

0

where T(ρ) ∈ CN×N is defined as

T(ρ) =

(
1

N

K∑
k=1

Rk

1 + δk(ρ)
+ S+ ρIN

)−1

and the elements of δ(ρ) , [δ1(ρ) · · · δK(ρ)]
T are defined as

δk(ρ) = limt→∞ δ
(t)
k (ρ), where for t = 1, 2, . . .

δ
(t)
k (ρ) =

1

N
trRk

 1

N

K∑
j=1

Rj

1 + δ
(t−1)
j (ρ)

+ S+ ρIN

−1

with initial values δ
(0)
k (ρ) = 1/ρ for all k.

Remark 3.1: The fixed-point algorithm in Theorem 1 to
compute the quantities δk(ρ) can be efficiently numerically
solved and is proved to converge. In some cases, closed-form
solutions for δ(ρ) exists. An example will be shown later in
Corollary 3.

Theorem 2 ([21], see also [20]): Let Θ ∈ CN×N be Her-
mitian nonnegative definite with uniformly bounded spectral
norm (with respect to N ). Under the conditions of Theorem 1,

1

N
trD

(
HHH + S+ ρIN

)−1
Θ
(
HHH + S+ ρIN

)−1

− 1

N
trDT′(ρ)

a.s.−−−−→
N→∞

0 (22)

where T′(ρ) ∈ CN×N is defined as

T′(ρ) = T(ρ)ΘT(ρ) +T(ρ)
1

N

K∑
k=1

Rkδ
′
k(ρ)

(1 + δk(ρ))
2T(ρ)
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T(ρ) and δ(ρ) are given by Theorem 1, and
δ′(ρ) = [δ′1(ρ) · · · δ′K(ρ)]

T is calculated as

δ′(ρ) = (IK − J(ρ))
−1

v(ρ)

where J(ρ) ∈ CK×K and v(ρ) ∈ CK are defined as

[J(ρ)]kl =
1
N trRkT(ρ)RlT(ρ)

N (1 + δl(ρ))
2 , 1 ≤ k, l ≤ K

[v(ρ)]k =
1

N
trRkT(ρ)ΘT(ρ), 1 ≤ k ≤ K.

Next, we provide SINR approximations in the sense of (20)
for MF and MMSE detection in the UL and for BF and RZF
precoding in the DL. These are our main results. Due to the
similarity of the SINR expressions for the UL and DL, we
only provide the proofs for BF and RZF in the appendix. The
proofs for MF and MMSE are very similar and omitted due
to space constraints.

Theorem 3 (Matched filter): Assume that A 1–3 hold.
Then, γMF

jm − γ̄MF
jm

a.s.−−−−→
N→∞

0, where γ̄MF
jm is given in (23).

Theorem 4 (Eigenbeamforming): Assume that A 1–3 hold.
Then, γBF

jm − γ̄BF
jm −−−−→

N→∞
0, where γ̄BF

jm is given in (24) with

λ̄j =
(

1
K

∑K
k=1

1
N trΦjjk

)−1

∀j.

Theorem 5 (MMSE detector): Assume that A 1–3 hold.
Then, γMMSE

jm − γ̄MMSE
jm

a.s.−−−−→
N→∞

0, where γ̄MMSE
jm is given in

(25) with

µjlkm =
1

N
trRjlkT

′
jm

−
2Re

(
ϑ∗
jlkϑ

′
jlkm

)
(1 + δjk)− |ϑjlk|2 δ′jkm

(1 + δjk)
2

ϑjlk =
1

N
trΦjlkTj

ϑ′
jlkm =

1

N
trΦjlkT

′
jm

where

(i) Tj = T(φul
j ) and δj = [δj1 · · · δjK ]T = δ(φul

j ) are
given by Theorem 1 for S = Zul

j /N , D = IN , and
Rk = Φjjk ∀k,

(ii) T̄′
j = T′(φul

j ) is given by Theorem 2 for S = Zul
j /N ,

Θ = IN , D = IN , and Rk = Φjjk ∀k,
(iii) T′

jm = T′(φul
j ) and δ′jm =

[
δ′j1m · · · δ′jKm

]T
= δ′(φul

j )

are given by Theorem 2 for S = Zul
j /N , Θ = Φjjm,

D = IN , and Rk = Φjjk ∀k.

Theorem 6 (Regularized Zero-Forcing): Assume that A 1–
3 hold. Then, γRZF

jm − γ̄RZF
jm −−−−→

N→∞
0, where γ̄RZF

jm is given in

(26) with

µljmk =
1

N
trRljmT′

lk

−
2Re

(
ϑ∗
ljmϑ′

ljmk

)
(1 + δlm)− |ϑljm|2 δ′lmk

(1 + δlm)
2

ϑljm =
1

N
trΦljmTl

ϑ′
ljmk =

1

N
trΦljmT′

lk

λ̄l =
K

N

(
1

N
trTl −

1

N
tr
(
Zdl

l

N
+ φdl

l IN

)
T̄′

l

)−1

where
(i) Tl = T(φdl

l ) and δl = [δl1 · · · δlK ]T = δ(φdl
l ) are

given by Theorem 1 for S = Zdl
l /N , D = IN , and

Rk = Φllk ∀k,
(ii) T̄′

l = T′(φdl
l ) is given by Theorem 2 for S = Zdl

l /N ,
Θ = IN , D = IN , and Rk = Φllk ∀k,

(iii) T′
lk = T′(φdl

l ) and δ′lk = [δ′l1k · · · δ′lKk]
T
= δ′(φdl

l ) are
given by Theorem 2 for S = Zdl

l /N , Θ = Φllk, D = IN ,
and Rk = Φllk ∀k.

Remark 3.2: Observe the similarity between the results for
MF and BF (MMSE and RZF). The main difference is that
in the downlink, all transmit powers are multiplied by the
power normalization factors λ̄j and the indices j, l and k,m
are swapped for the interference terms.

Remark 3.3: The expressions of γ̄MMSE
jm and γ̄RZF

jm can be
greatly simplified under a less general channel model, e.g., no
antenna correlation or Wyner-type models with the same path
loss for all interfering UTs [22]. We provide later a special
case for which γ̄MMSE

jm and γ̄RZF
jm are given in closed form.

Next, we consider the case when the number of antennas
per BS is much larger than the number of UTs per cell, i.e.,
N ≫ K.

Corollary 1: Let N → ∞, such that K/N → 0. Denote
βjlk = limN

1
N trΦjlk whenever the limit exists, and define

λ̄∞,BF
j =

( 1

K

K∑
k=1

βjjk

)−1

λ̄∞,RZF
j =

( 1

K

K∑
k=1

βjjk(
φdl
j + βjjk

)2)−1

.

Then,

γ̄MF
jm →

β2
jjm∑

l ̸=j |βjlm|2

γ̄BF
jm →

λ̄∞,BF
j β2

jjm∑
l ̸=j λ̄

∞,BF
l |βljm|2

γ̄MMSE
jm →

β2
jjm∑

l ̸=j

(
φul

j

φul
l

)2
|βjlm|2

γ̄RZF
jm →

λ̄∞,RZF
j β2

jjm∑
l ̸=j

(
φdl

l φ
dl
j+φdl

l βjjm

φdl
l φ

dl
j+φdl

j βllm

)2
λ̄∞,RZF
l |βljm|2

.
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γ̄MF
jm =

(
1
N trΦjjm

)2
1

ρulN
1
N trΦjjm + 1

N

∑
l,k

1
N trRjlkΦjjm +

∑
l ̸=j

∣∣ 1
N trΦjlm

∣∣2 (23)

γ̄BF
jm =

λ̄j

(
1
N trΦjjm

)2
1

ρdlN
+ 1

N

∑
l,k λ̄l

1
N trRljmΦllk +

∑
l ̸=j λ̄l

∣∣ 1
N trΦljm

∣∣2 (24)

γ̄MMSE
jm =

δ2jm
1

ρulN
1
N trΦjjmT̄′

j +
1
N

∑
l,k µjlkm +

∑
l ̸=j |ϑjlm|2

(25)

γ̄RZF
jm =

λ̄jδ
2
jm

(1+δjm)2

ρdlN
+ 1

N

∑
l,k λ̄l

(
1+δjm
1+δlk

)2
µljmk +

∑
l ̸=j λ̄l

(
1+δjm
1+δlm

)2
|ϑljm|2

(26)

Proof: Note that the first and the second term in the
denominator of the asymptotic SINR expressions in The-
orems 3–6 vanish as N → ∞ while K/N → 0. For
the remaining terms, further note that Tj(φ) → φ−1 and
T̄′

j(φ) → φ−2. Lastly, for RZF, we can write λ̄j equiva-

lently as λ̄j =

(
1
K

∑
k

1
N trΦjjkT

′
j

(1+ 1
N trΦjjkTj)2

)−1

. Replacing these

quantities in the corresponding SINR expressions leads to the
desired result.

Remark 3.4: As already observed in [1, Eq. (13)], the
performance of the MF and the MMSE detector coincide with
an infinite number of BS-antennas per UT if φul

j = φul
l ∀l.

However, even for λ̄∞
j = λ̄∞

l and φdl
j = φdl

l ∀l, the
SINR under RZF and BF are not necessarily identical. This
is because the received interference power depends on the
correlation matrices Φllm.

IV. ON THE MASSIVE MIMO EFFECT

Let us now consider the simplified channel model

Hjj =

√
N

P
AVjj , Hjl =

√
α
N

P
AVjl, l ̸= j (27)

where A ∈ CN×P is composed of P ≤ N columns of an
arbitrary unitary N × N matrix, Vjl ∈ CP×K are standard
complex Gaussian matrices and α ∈ (0, 1] is an intercell
interference factor. Note that this is a special case of (2). Under
this model, the total energy of the channel grows linearly with
N and K, since E

[
trHjjH

H
jj

]
= KN

P trAAH = KN . The
motivation behind this channel model is twofold. First, we
assume that the antenna aperture increases with each additional
antenna element. Thus, the captured energy increases linearly
with N . This is in contrast to existing works which assume
that more and more antenna elements are packed into a fixed
volume, see, e.g., [23]. An insufficiency of this channel model
is that the captured energy grows without bounds as N → ∞.
However, we believe that linear energy gains can be achieved
up to very large numbers of antennas if the size of the antenna
array is scaled accordingly. For example, at a carrier frequency
of 2.6GHz (i.e., wavelength λ ≈ 12 cm), a 16 × 16 antenna
array with λ/2-spacing would occupy an area of roughly 1m2.

Second, the number of DoF P offered by the channel does not
need to be equal to N [8]. One could either assume P to be
large but constant4 or to scale with N , e.g., P = cN , where
c ∈ (0, 1]. In general, P depends on the amount of scattering in
the channel and, therefore, on the radio environment.5 Let us
further assume that the transmit powers per UT in the uplink
and downlink are equal, i.e., ρul = ρdl = ρ, and that the
matrices Zdl

j and Zul
j used for precoding and detection are

also equal and given by (12). Under these assumptions, the
performance of MF and BF (MMSE and RZF) coincides and
Theorems 3–6 can be given in closed form:

Corollary 2: For the channel model (27) and ρul = ρdl = ρ,
γ̄MF
jm and γ̄BF

jm ∀j,m, are given as

γ̄MF = γ̄BF =
1

1
νρN + K

P
L̄
ν + α(L̄− 1)

(28)

=
1

L̄

ρN︸︷︷︸
noise

+
1

ρtr

(
P/N

ρN
+

K

N
L̄

)
︸ ︷︷ ︸

imperfect CSI

+
K

P
L̄2︸ ︷︷ ︸

interference

+ α
(
L̄− 1

)︸ ︷︷ ︸
pilot contamination

(29)

where L̄ = 1 + α(L− 1) and ν =
ρtr

N
P

1+ρtr
N
P L̄

.
Corollary 3: For the channel model (27), ρul = ρdl, φul

j =
φdl
j = φ, and Zul

j = Zdl
j = Zj =

∑
l,k Rjlk −

∑
k Φjjk ∀j,

γ̄MMSE
jm and γ̄RZF

jm ∀j,m, are given as

γ̄MMSE = γ̄RZF =
1

1
νρNX + K

P
L̄
ν Y + α(L̄− 1)

(30)

where

Y = X +
ν(1 + α2(L− 1))(1− 2Z)

L̄(Z2 −K/P )

δ =
1− S +

√
(1 + S)2 − 4K/P

2(S −K/P )

4Note that if P is assumed to be fixed, the spectral norm of the matrix√
N/PA grows without bound as N → ∞. Thus, assumption A 1 is violated

and the asymptotic analysis in Section III is not valid anymore.
5See also [2], [10], [11] for a discussion of the issue of “favorable

propagation conditions” which is closely related to the important connection
between P and N .
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L̄ = 1+ α(L− 1), ν =
ρtr

N
P

1+ρtr
N
P L̄

, X = Z2

Z2−K
P

, Z = 1+δ
δ , and

S = φ
ν + KL̄

Pν .
Sketch: Notice that Φjlk = max(1{l = j}, α)NP AAH,

where 1{·} is the indicator function, and
Zj = K(L̄− ν)NP AAH ∀j, l, k. Using these expressions, one
can show after some straight-forward but tedious calculus that
Theorems 1 and 2 can be given in closed form and that the
SINR expressions in Theorems 3–6 can be greatly simplified.

One can make several observations from (28) and (30).
First, the asymptotic SINR depends on the transmit SNR
ρ only through the term 1

νρN . Thus, the “effective SNR”
ρN increases linearly with N . If the number of antennas
is doubled, the transmit power can consequently be reduced
by a factor two to achieve the same performance. However,
if the transmit and the training power are reduced as N
grows, this conclusions fails to hold, as can been seen from
the term νρN . The product of transmit and training power
must satisfy lim infN ρρtrN > 0 (if lim infN P/N > 0).
Otherwise the SINR converges to zero as N → ∞. As already
observed in [4], if ρtr = ρ, the transmit power can be made
only inversely proportional to

√
N . Second, the interference

depends mainly on the ratio P/K (number of DoF per UT)
and not directly on N . Thus, interference can only be reduced
by the use of additional antennas if the environment provides
sufficient scattering. Third, noise, channel estimation errors,
and interference vanish if N,P → ∞ at the same speed, while
pilot contamination remains the only performance limitation:

γ̄MF, γ̄BF, γ̄MMSE, γ̄RZF −−−−−−−−−−−−→
N,P→∞, K/N→0

γ∞ =
1

α(L̄− 1)
.

(31)

We denote by R∞ the ultimately achievable rate, defined as

R∞ = log2 (1 + γ∞) = log2

(
1 +

1

α(L̄− 1)

)
. (32)

It is interesting that all precoders and detectors achieve the
same asymptotic performance limit γ∞. Note that without
pilot contamination, i.e., for L = 1 or α = 0, the SINR
grows without bounds as P,N → ∞. If P is fixed but large,
the SINR saturates at a smaller value than γ∞. In this case,
adding antennas only improves the SNR but does not reduce
the multiuser interference. Also MMSE/RZF have a superior
performance than MF/BF as N → ∞.

Before we proceed, let us verify the accuracy
of the rate-approximations R̄MF = log(1 + γ̄MF) and
R̄MMSE = log(1 + γ̄MMMSE) as given by Corollaries 2
and 3, respectively, for finite N and K. In Fig. 2, we depict
the ergodic achievable rate Rjm (13) of an arbitrary UT
with MF and MMSE detection as a function of the number
of antennas N for K = 10 UTs, L = 4 cells, ρtr = 6 dB,
ρ = 10 dB, φul

l = 1/(ρN), and intercell interference factor
α = 0.1. We compare two different cases: P = N and
P = N/3. As expected, the performance in the latter
scenario is worse due to stronger multiuser interference.
Most importantly, our closed-form approximations are almost
indistinguishable from the simulation results over the entire
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Fig. 2. Ergodic achievable rate with MF and MMSE detection versus number
of antennas N for P ∈ {N,N/3}, ρtr = 6 dB and ρ = 10 dB.

range of N . The results for the downlink with MF and RZF
look similar and are omitted due to space limitations.

Based on our previous observations, it is justified to speak
about a massive MIMO effect whenever the SINR γjm (in the
UL or DL) is close to γ∞, or in other words, whenever noise,
channel estimation errors, and interference are small compared
to pilot contamination. It becomes evident from (29) and (30)
that the number of antennas needed to achieve this effect
depends strongly on the system parameters P , K, L, α, ρtr,
and ρ. In particular, there is no massive MIMO effect without
pilot contamination since γ∞ → ∞. Thus, massive MIMO can
be seen as a particular operating condition in multi-cellular
systems where the performance is ultimately limited by pilot
contamination and MF/BF achieve a performance close to this
ultimate limit. To make this definition more precise, we say
that we operate under massive MIMO conditions if, for some
desired “massive MIMO efficiency” η ∈ (0, 1),

R = log(1 + γ) ≥ ηR∞ (33)

where γ is the SINR in the UL/DL with any detec-
tion/precoding scheme. This condition implies that we achieve
at least the fraction η of the ultimate performance limit. If
we assume that ρtr ≫ 1, i.e., ν ≈ L̄−1, the expressions of
γ̄MF, γ̄BF, γ̄MMSE, and γ̄RZF in Corollaries 2 and 3 depend on
P,K, ρ, and N only through the ratio P

K and the effective
SNR ρN . Thus, for a given set of parameters ρ, N , α, L, and
φ, we can easily find the fraction P

K necessary to satisfy (33).
Figs. 3 and 4 show the necessary DoF per UT P

K for a
given effective SNR ρN to achieve a spectral efficiency of
ηR∞ with either MF/BF (solid lines) or MMSE/RZF (dashed
lines). We consider L = 4 cells, φ = 1/(ρN), and an intercell
interference factor α = 0.3 and α = 0.1, respectively. The
plots must be understood in the following way: Each curve
corresponds to a particular value of η. In the region above
each curve, the condition (33) is satisfied.

Let us first focus on Fig. 3 with α = 0.3. For an effective
SNR ρN = 20 dB (e.g., ρ = 0 dB and N = 100 = 20 dB),
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Fig. 3. Degrees of freedom per UT P/K necessary to achieve ηR∞ versus
effective SNR ρN for L = 4 and α = 0.3.
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Fig. 4. Degrees of freedom per UT P/K necessary to achieve ηR∞ versus
effective SNR ρN for L = 4 and α = 0.1.

we need about P/K = 90 DoF per UT with MF/BF to
achieve 90% of the ultimate performance R∞, i.e., 0.9×2.2 ≈
2 b/s/Hz. If P ≈ N , only a single UT could be served
(Note that this is a simplifying example. Our analysis assumes
K ≫ 1.). However, if we had N = 1000 = 30 dB antennas,
the transmit power ρ could be decreased by 10 dB and 10
UTs could be served with the same performance. At the same
operating point, the MMSE/RZF requires only ∼ 60 DoF per
UT to achieve 90% of the ultimate performance. Thus, the
use of MMSE/RZF would allow us to increase the number of
simultaneously served UTs by a factor 90

60 = 1.5. This example
also demonstrates the importance of the relation between N
and P . In particular, if P saturates for some N , adding more
antennas increases the effective SNR but does not reduce the
multiuser interference. Thus, the number of UTs which can be

simultaneously supported depends significantly on the radio
environment. We can further see that adding antennas shows
diminishing returns. This is because the distances between
the curves for different values of η grow exponentially fast.
Remember that for η = 1, a ratio of P/K = ∞ would be
needed. A last observation we can make is that the absolute
difference between MF/BF and MMSE/RZF is marginal for
small values of η but gets quickly pronounced as η → 1.

Moving to Fig. 4 for α = 0.1, we can see that for the
same effective SNR ρN = 20 dB and the same number
of DoF per UT P/K = 90 as in the previous example,
only 80% of the ultimate performance are achieved by
MF/BF. However, since the intercell interference is signifi-
cantly smaller compared to the previous example, this corre-
sponds to 0.9× 5.1 ≈ 4.6 b/s/Hz. Thus, although we operate
further away from the ultimate performance limit, the resulting
spectral efficiency is still higher. With MMSE/RZF, only 35
DoF per UT are necessary to achieve the same performance
and, consequently, 90/35 ≈ 2.5 times more UTs could be
simultaneously served. With decreasing intercell interference
(and hence decreasing pilot contamination) the advantages of
MMSE/RZF become more and more important.

V. NUMERICAL RESULTS

Let us now validate the accuracy of Theorems 4 and 6
for finite N and K in a more realistic downlink scenario.
Simulations for the uplink, i.e., Theorems 3 and 5, are omit-
ted due to space constraints but provide similar results (see
Remark 3.2). We consider a hexagonal system with L = 7
cells as shown in Fig. 5. The inner cell radius is normalized
to one and we assume a distance-based path loss model with
path loss exponent β = 3.7. To allow for reproducibility of
our results, we distribute K = 10 UTs uniformly on a circle
of radius 2/3 around each BS and do not consider shadowing.
We further assume a training SNR ρtr = 6 dB and transmit
SNR ρdl = 10 dB. For RZF, we use a regularization factor
φdl
j = 1/ρdl and Zdl

j = 0. Average rates are then calculated for
the UTs in the center cell.

First, we consider a simple channel model without antenna
correlation, i.e., R̃jlk = d

−β/2
jlk IN , where djlk is the distance

between BS j and the kth UTs in cell l (cf. (2)). For an
unlimited number of antennas per UT, the precoding schemes
lead respectively to the ultimate average rates 7.2 b/s/Hz (BF)
and 7.08 b/s/Hz (RZF) (see Remark 3.4). In Fig. 6, we show
the achievable rates under both precoding techniques and their
approximations by Theorems 4 and 6 as a function of the
number of antennas N . Both results match very well, even for
small N . We can observe that RZF leads to significant perfor-
mance gains over BF as it reduces multiuser interference. For
N = 400, RZF achieves 82% of the ultimate limit while BF
achieves only 65%.

Second, we consider a physical channel model with a fixed
number of dimensions P as in [8]. For a uniform linear array,
the matrices R̃jlk are given as R̃jlk = d

−β/2
jlk [A 0N×N−P ],

where A = [a(ϕ1) · · ·a(ϕP )] ∈ CN×P is composed of the
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Fig. 5. 7–cell hexagonal system layout. The distance between two adjacent
cells is normalized to 2. There are K = 10 UTs uniformly distributed on a
circle of radius 2/3 around each BS.

steering vectors a(ϕ) ∈ CN defined as

a(ϕ) =
1√
P

[
1, e−i2πω sin(ϕ), . . . , e−i2πω(N−1) sin(ϕ)

]T
(34)

where ω is the antenna spacing in multiples of the wavelength
and ϕp = −π/2+(p−1)π/P, p = 1, . . . , P , are the uniformly
distributed angles of transmission. We assume that the physical
dimensions P scale with the number of antennas as P = N/2
and let ω = 0.3. Since 1

N trAAH = 1, the ultimately
achievable rates under this channel model are equal to those
of the previous channel model without antenna correlation.
For comparison, we also depict in Fig. 6 the achievable rates
and their approximations for the physical channel model.
Interestingly, while the shapes of the curves for both precoders
are similar to those without antenna correlation, it becomes
clear that low rank correlation matrices severely degrade the
performance. Note that we have assumed the same correlation
matrix A for all UTs. In a practical system, however, different
UTs will have different correlation matrices, possibly spanning
different subspaces. In such a scenario, antenna correlation
might have also some positive effects. For a further discussion
of this topic, we refer to the very recent work [24].

VI. CONCLUSIONS

We have provided a unified analysis of the UL/DL per-
formance of linear detectors/precoders in non-cooperative
multi-cell multi-user TDD systems. Assuming a large system
limit, we have derived asymptotically tight approximations of
achievable UL/DL-rates under a very general channel model
which accounts for imperfect channel estimation, pilot contam-
ination, path loss, and terminal-specific antenna correlation.
These approximations were shown to be accurate for realistic
system dimensions and enable, consequently, future studies
of realistic effects, such as antenna correlation, spacing and
aperture, without the need for simulations. Our results are also
directly applicable in the context of large distributed antenna
systems. For a simplified channel model, we have observed
that the performance depends mainly on the physical DoF per
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Fig. 6. Average per-user rate with BF and RZF precoding versus the number
of antennas N . Solid and dashed lines depict the asymptotic approximations,
markers the simulation results.

UT the channel offers and the effective SNR. Moreover, we
have determined how many antennas are needed to achieve
η % of the ultimate performance limit with infinitely many
antennas and how many more antennas are needed with
MF/BF to achieve MMSE/RZF performance. Simulations for
a more realistic system model suggest that MMSE/RZF can
achieve the performance of the simple MF/BF schemes with
a significantly reduced number of antennas. Since massive
MIMO TDD systems are a promising network architecture,
it seems necessary to verify the theoretical performance pre-
dictions by channel measurements and prototypes.

APPENDIX A
USEFUL LEMMAS

Lemma 1 (Matrix inversion lemma (I) [25, Eq. (2.2)]):
Let A ∈ CN×N be Hermitian invertible. Then, for any vector
x ∈ CN and any scalar τ ∈ C such that A + τxxH is
invertible,

xH(A+ τxxH)−1 =
xHA−1

1 + τxHA−1x
.

Lemma 2 (Matrix inversion lemma (II)): Let A ∈ CN×N

be Hermitian invertible. Then, for any vector x ∈ CN and
any scalar τ ∈ C such that A+ τxxH is invertible,

(A+ τxxH)−1 = A−1 − A−1τxxHA−1

1 + τxHA−1x
.

Lemma 3 (Rank-1 perturbation lemma [25]): Let z < 0,
A ∈ CN×N , B ∈ CN×N with B Hermitian nonnegative
definite, and v ∈ CN . Then,∣∣tr ((B− zIN )−1 − (B+ vvH − zIN )−1

)
A
∣∣ ≤ ∥A∥

|z|
.

Lemma 4 ([26, Lem. B.26], [27, Thm. 3.7],[21, Lem. 12]):
Let A ∈ CN×N and x,y ∼ CN (0, 1

N IN ). Assume that A
has uniformly bounded spectral norm (with respect to N )
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and that x and y are mutually independent and independent
of A. Then, for all p ≥ 1,

(i) E
[∣∣∣∣xHAx− 1

N
trA

∣∣∣∣p] = O
(

1

N
p
2

)
(ii) xHAx− 1

N
trA a.s.−−−−→

N→∞
0

(iii) xHAy
a.s.−−−−→

N→∞
0

(iv) E

[∣∣∣∣∣(xHAx
)2 − ( 1

N
trA

)2
∣∣∣∣∣
]
−−−−→
N→∞

0.

APPENDIX B
PROOFS

Proof of Theorem 4: We start by dividing the
denominator and numerator of γdl

jm by 1
N .

1) Signal power: Straight-forward computations yield to

1

N
λj

∣∣∣E [hH
jjmĥjjm

]∣∣∣2
=

1

E
[

1
K

∑K
k=1

1
N ĥH

jjkĥjjk

] ∣∣∣∣E [ 1

N
ĥH
jjmĥjjm

]∣∣∣∣2

= λ̄j

(
1

N
trΦjjm

)2

(35)

where λ̄j =
(

1
K

∑K
k=1

1
N trΦjjk

)−1

. By A 1 and A 2,
0 < lim infN λ̄j ≤ lim supN λ̄j < ∞ holds.

2) Interference power: As a direct consequence of
Lemma 4 (i) and the independence of ĥjjm and h̃jjm,

λl

N
var
[
hH
jjmĥjjm

]
= λ̄jE

[∣∣∣∣ 1N ĥH
jjmĥjjm − 1

N
trΦjjm

∣∣∣∣2
]

+
λ̄j

N2
E
[∣∣∣h̃H

jjmĥjjmĥH
jjmh̃jjm

∣∣∣] −−−−→
N→∞

0. (36)

For the remaining terms, we have by (7)

1

N
λlE

[∣∣∣hH
ljmĥllk

∣∣∣2]

= λ̄lE

 1

N2

∣∣∣∣∣hH
ljmRllkQlk

(
L∑

i=1

hlik +
1

√
ρtr

ntr
lk

)∣∣∣∣∣
2


= λ̄l



1
N2 trRljmΦllk , k ̸= m

E
[∣∣∣ 1N hH

ljmRllmQlmhljm

∣∣∣2]
+ 1

N2 trRljmΦllm

− 1
N2 trRljmΦljmQlmRllm , k = m

. (37)

By Lemma 4 (iv),

E

[∣∣∣∣ 1N hH
ljmRllmQlmhljm

∣∣∣∣2
]
−
∣∣∣∣ 1N trΦljm

∣∣∣∣2 −−−−→
N→∞

0.

Combining all results yields∑
(l,k) ̸=(j,m)

1

N
λlE

[∣∣∣hH
ljmĥllk

∣∣∣2]−
1

N

∑
l,k

λ̄l
1

N
trRljmΦllk −

∑
l ̸=j

λ̄l

∣∣∣∣ 1N trΦljm

∣∣∣∣2 −−−−→
N→∞

0.

(38)

Note that we have neglected the terms
1

N2 trRljmΦljmQlmRllm which appear only L−1 times and
therefore vanish asymptotically. Moreover, we have added
the single term λ̄j

1
N2 trRjjmΦjjk which is also negligible

for large N . Replacing the asymptotic approximations for the
useful signal power and the interference power in (15) finally
yields

γdl
jm−

λ̄j

(
1
N trΦjjm

)2
1

ρdlN
+ 1

N

∑
l,k λ̄l

1
N trRljmΦllk +

∑
l ̸=j λ̄l

∣∣ 1
N trΦljm

∣∣2
−−−−→
N→∞

0. (39)

Proof of Theorem 6: Define the following matrices for
j = 1, . . . , L and k = 1, . . . ,K:

Σj =
(
ĤjjĤ

H
jj + Zdl

j +Nφdl
j IN

)−1

(40)

Σjk =
(
ĤjjĤ

H
jj − ĥjjkĥ

H
jjk + Zdl

j +Nφdl
j IN

)−1

. (41)

1) Signal power: We divide the denominator and numerator
of γdl

jm by 1
N . Thus,6√

λj

N
hH
jjmwjm

=

√
λj

N
hH
jjmΣjĥjjm

(a)
=

√√√√ K

NE
[
trΣjĤjjĤH

jjΣj

] hH
jjmΣjmĥjjm

1 + ĥH
jjmΣjmĥjjm

(b)
≍
√

K

NE
[
trΣj − tr

(
Zdl

j +Nφdl
j IN

)
Σ2

j

] 1
N trΦjjmTj

1 + 1
N trΦjjmTj

(c)
≍
√

K

N

√√√√ 1

1
N trTj − 1

N tr
(

Zdl
j

N + φdl
j IN

)
T̄′

1
N trΦjjmTj

1 + 1
N trΦjjmTj

(d)
=
√

λ̄j
δjm

1 + δjm
(42)

where (a) follows from Lemma 1, (b) follows from
Lemma 4 (ii), Lemma 3, and Theorem 1 applied to the
term hH

jjmΣjmĥjjm,7 and (c) results from Theorem 1 applied
to trΣj and Theorem 2 applied to tr

(
Zdl

j +Nφdl
j IN

)
Σ2

j .
Note that both theorems do not only imply almost sure

6We denote an ≍ bn the equivalence relation an − bn
a.s.−−−−→

n→∞
0 for two

infinite sequences an and bn.
7Note that these are standard steps in proofs using large random matrix

theory. Details can be found, e.g., in [20] or [27].
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convergence but also convergence in the mean. In the last
step, we have used the definitions δjm = 1

N trRjjmTj and

λ̄j =
K
N

(
1
N trTj − 1

N tr
(

Zdl
j

N + φdl
j IN

)
T̄′
)−1

. By the dom-

inated convergence theorem [18] and the continuous mapping
theorem [19], it is straight-forward to show that

λj

N

∣∣∣E [hH
jjmΣjĥjjm

]∣∣∣2 − λ̄j

δ2jm

(1 + δjm)
2 −−−−→

N→∞
0. (43)

2) Interference power: Define the following quantities:

a = ĥH
jjmΣjĥjjm (44)

ā = E
[
hH
jjmΣjĥjjm

]
(45)

b = h̃H
jjmΣjĥjjm. (46)

By Lemma 1, we have 0 ≤ a, ā ≤ 1. Moreover, E [b] = 0 and
E [ab] = E [ab∗] = 0. Thus,

var
[
hH
jjmΣjĥjjm

]
= E

[
|a+ b− ā|2

]
= E [(a− ā)(a+ ā)] + E

[
|b|2
]

≤ 2 E [|a− ā|)] + E
[
|b|2
]
. (47)

We have shown in (42) (b) that a − δjm
1+δjm

a.s−−−−→
N→∞

0. Since
a, ā are bounded, this implies by the dominated convergence
theorem that also E [|a− ā|] −−−−→

N→∞
0. Moreover, one can

show that E
[
|b|2
]
≤ 1

Nφdl
j
−2∥Rjjm∥2 −−−−→

N→∞
0. Thus, we

have from (47)

1

N
λjvar

[
hH
jjmΣjĥjjm

]
−−−−→
N→∞

0. (48)

Consider now the terms |hH
jlmwlk|2:

|hH
jlmwlk|2

(a)
=

ĥH
llkΣlkhjlmhH

jlmΣlkĥllk(
1 + ĥH

llkΣlkĥllk

)2
(b)
≍ 1

(1 + δlk)
2

{
hH
ljmΣlkΦllkΣlkhljm , k ̸= m

|ϑljm|2 , k = m
(49)

where (a) is due to Lemma 1, (b) follows from Lemmas 4,
3, Theorem 1, and where we have used the definitions
δlk = 1

N trΦllkTl and ϑljm = 1
N trΦljmTl. In order to treat

the terms for k ̸= m further, we need the following identity
from Lemma 2:

Σlk = Σlkm − ΣlkmĥllmĥH
llmΣlkm

1 + ĥH
llmΣlkmĥllm

, k ̸= m (50)

where

Σlkm =(
ĤjjĤ

H
jj − ĥjjkĥ

H
jjk − ĥjjmĥH

jjm + Zdl
j +Nφdl

j IN

)−1

.

(51)

Note that Σlkm is independent of hjlm while Σlk is not. Using
(50), we can write

hH
ljmΣlkΦllkΣlkhljm

= hH
ljmΣlkmΦllkΣlkmhljm

+

∣∣∣hH
ljmΣlkmĥllm

∣∣∣2 ĥH
llmΣlkmΦllkΣlkmĥllm(

1 + ĥH
llmΣlkmĥllm

)2
− 2Re

{
ĥH
llmΣlkmhljmhH

ljmΣlkmΦllkΣlkĥllm

1 + ĥH
llmΣlkmĥllm

}
.

(52)

As already shown above, we have ĥH
llmΣlkmĥllm ≍ δlm and

ĥH
llmΣlkmhljm ≍ ϑ∗

ljm. From Lemmas 4, 3 and Theorem 2,
we can similarly obtain

hH
ljmΣlkmΦllkΣlkmhljm ≍ 1

N2
trRljmT′

lk (53)

ĥH
llmΣlkmΦllkΣlkmĥllm ≍ 1

N2
trΦllmT′

lk =
δ′lmk

N
(54)

hH
ljmΣlkmΦllkΣlkmĥllm ≍ 1

N2
trΦljmT′

lk =
ϑ′
ljmk

N
(55)

where T′
lk = T′(φdl

l ) and δ′lk = [δ′l1k . . . δ
′
lKk]

T
= δ′(φdl

l ) are
given by Theorem 2 for S = Zdl

l /N , Θ = Φllk, D = IN , and
Rk = Φllk for all k. Combining the last results yields to

hH
ljmΣlkΦllkΣlkhljm ≍ trRljmT′

lk

N2

−
2Re

{
ϑ∗
ljmϑ′

ljmk

}
(1 + δjm)− |ϑljm|2δ′lmk

N (1 + δlm)
2 =

µljmk

N
.

(56)

Note now that∑
(l,k) ̸=(j,m)

λl

N
|hH

jlmwlk|2 ≤
∑
l

λ̄lh
H
jlmΣlĤllĤ

H
llΣ

H
l hjlm

≤
∑
l

λ̄hH
jlmΣlmhljm. (57)

Since hH
jlmΣlmhljm ≍ 1

N trRljmTl,

E
[
hH
jlmΣlmhljm

]
− 1

N trRljmTl → 0 by Lemmas 4, 3
and Theorem 1, and 1

N trRljmTl ≤ 1
φdl

l

∥Rljm∥, we have by
dominated convergence arguments∑

(l,k)̸=(j,m)

λl

N
E
[
|hH

jlmwlk|2
]
−
∑
l,k

λ̄l

N

µljmk

(1 + δlk)2

−
∑
l ̸=j

λ̄j
|ϑljm|2

(1 + δlm)2
−−−−→
N→∞

0 (58)

where we have also subtracted the asymptotically negligible
term λ̄j

N
µjjmm

(1+δjm)2 .
Combining (43), (48), and (58) concludes the proof.
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