Tracking fast changing non-stationary distributions with a topologically adaptive neural network: Application to video tracking

Abstract : In this paper, an original method named GNG-T, extended from GNG-U algorithm by Fritzke is presented. The method performs continuously vector quantization over a distribution that changes over time. It deals with both sudden changes and continuous ones, and is thus suited for video tracking framework, where continuous tracking is required as well as fast adaptation to incoming and outgoing people. The central mechanism relies on the management of quantization resolution, that cope with stopping condition problems of usual Growing Neural Gas inspired methods. Application to video tracking is briefly presented.
Type de document :
Communication dans un congrès
15th European Symposium on Artificial Neural Networks (ESANN2007), Apr 2007, Bruges, Belgium. pp.43-48, 2007
Liste complète des métadonnées

Littérature citée [7 références]  Voir  Masquer  Télécharger

https://hal-supelec.archives-ouvertes.fr/hal-00250981
Contributeur : Sébastien Van Luchene <>
Soumis le : mardi 12 février 2008 - 12:03:19
Dernière modification le : jeudi 29 mars 2018 - 11:06:04
Document(s) archivé(s) le : lundi 17 mai 2010 - 21:10:45

Fichier

es2007-89.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-00250981, version 1

Collections

Citation

Georges Drumea, Hervé Frezza-Buet. Tracking fast changing non-stationary distributions with a topologically adaptive neural network: Application to video tracking. 15th European Symposium on Artificial Neural Networks (ESANN2007), Apr 2007, Bruges, Belgium. pp.43-48, 2007. 〈hal-00250981〉

Partager

Métriques

Consultations de la notice

142

Téléchargements de fichiers

70