J. P. Chilès and P. Delfiner, Geostatistics, Modeling Spatial Uncertainty, 1999.

T. M. Cover and A. T. Joy, Elements of Information Theory, 1991.

D. Geman and B. Jedynak, An active testing model for tracking roads in satellite images, Institut National de Recherche en Informatique et en Automatique (INRIA), 1995.
DOI : 10.1109/34.476006

URL : https://hal.archives-ouvertes.fr/inria-00073935

D. Huang, T. Allen, W. Notz, and N. Zeng, Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models, Journal of Global Optimization, vol.25, issue.1, pp.441-466, 2006.
DOI : 10.1007/s10898-005-2454-3

D. R. Jones, A taxonomy of global optimization methods based on response surfaces, Journal of Global Optimization, vol.21, issue.4, pp.345-383, 2001.
DOI : 10.1023/A:1012771025575

D. R. Jones, M. Schonlau, and J. William, Efficient global optimization of expensive black-box functions, Journal of Global Optimization, vol.13, issue.4, pp.455-492, 1998.
DOI : 10.1023/A:1008306431147

G. Matheron, Principles of geostatistics, Economic Geology, vol.58, issue.8, pp.1246-1266, 1963.
DOI : 10.2113/gsecongeo.58.8.1246

A. J. Smola, Learning with Kernels, 1998.

M. L. Stein, Interpolation of Spatial Data: Some Theory for Kriging, 1999.
DOI : 10.1007/978-1-4612-1494-6

E. Vazquez, Modélisation comportementale de systèmes nonlinéaires multivariables par méthodes à noyaux et application, 2005.

J. Villemonteix, E. Vazquez, M. Sidorkiewicz, and E. Walter, Gradientbased IAGO strategy for the global optimization of expensive-toevaluate functions and application to intake-port design. Accepted for the conference on Advances in Global Optimization: Theory and Applications, 2007.

J. Villemonteix, E. Vazquez, and E. Walter, An informational approach to the global optimization of expensive-to-evaluate functions, Journal of Global Optimization, vol.10, issue.5, 2006.
DOI : 10.1007/s10898-008-9354-2

URL : https://hal.archives-ouvertes.fr/hal-00354262

G. Wahba, Support vector machines, reproducing kernel Hilbert spaces, and randomized GACV, Advances in Kernel Methods -Support Vector Learning, pp.69-87, 1998.

E. Walter and L. Pronzato, Identification of Parametric Models from Experimental Data, 1997.