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Using Tsypkin’s Approach for the Study of a Class of
Mixed-Signal Nonlinear Systems

Jérôme Juillard and Eric Colinet

Abstract—An extension of Tsypkin’s approach is proposed, in
order to determine the values of the oscillation frequencies of
mixed-signal nonlinear systems consisting of one possibly nonideal
relay, one discrete-time block with a zeroth-order hold, and one
continuous-time block. Several methods for determining the shape
of the complex oscillations in some situations are then proposed
and discussed.

Index Terms—Limit cycles, mixed-signal systems, relay feedback
systems.

I. INTRODUCTION

RESONANT microelectromechanical systems (MEMS)
have been a growing field of interest [1] for the last few

years. The basic principle of resonant MEMS is to measure the
frequency shift of an oscillating microstructure that is affected
by the variation of a given physical quantity (such as accel-
eration [2] or pressure [3]). Other resonant MEMS in which
the frequency of the oscillations is also a parameter of interest
include microgyroscopes [4] and micromechanical bandpass
filters [5], [6]. In all those applications, the microstructure is
usually brought to oscillate via a feedback scheme [2], [7],
[8] that may be composed of analog and digital components.
In many publications, the analysis of the system is performed
using describing function methods and neglecting the influence
of sampling and holding on the performance of the system.

While this approximation is satisfactory for a rough estima-
tion of the behaviour of the system, it falls down when, as in
our case, a more precise analysis is required. For example, con-
sider the system of Fig. 1. Whenever the mass passes its posi-
tion of equilibrium, a Dirac impulse (the first derivative of the
relay’s output) is delivered to the system, which is therefore ex-
cited. It can be shown [9] that the oscillation frequency of such
a system is . Such a feedback scheme may be very
useful in various MEMS applications, notably those involving
electrostatic actuation [10]. However, realizing such a system
will be very impractical, and solutions like that of Fig. 2, which
involve discrete-time components, will usually be preferred. It
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Fig. 1. Mass-spring-damper system G(s) with natural pulsation ! and
damping coefficient � can be brought to oscillate by adding a relay and a
continuous differentiator H(s) in its feedback path. H(s) ideally delivers
Dirac impulses.

Fig. 2. Discrete-time differentiator delivers pulses of finite intensity and dura-
tion to G(s).

is quite clear that the frequency of the oscillations will be af-
fected by the value of the sampling period of the discrete part
(which is equal to the duration of the delivered pulses).

The analysis of such a mixed-signal nonlinear system is no
longer trivial and, to the best of our knowledge, there currently
exists no simple method for determining precisely its oscillation
frequency. Although there exists some abundant literature on the
subject of oscillations of relay feedback systems [11]–[14], most
of it deals either with solely continuous systems or with solely
discrete ones. Also, many of these studies emerge from a context
of control applications. From this perspective, oscillations are at
best parasitic and must be avoided at all costs. As a consequence,
they are mostly dedicated to showing the existence of periodic
solutions and studying their stability. This is not so in the context
of resonant sensors: a sustained oscillation must be obtained for
the sensor to work properly. For some applications [15], the
shape of the limit cycle may also be of great importance. The
determination of this shape has been studied extensively in the
context of first and second-order sigma–delta converters, as in
[16] or [17], but not from a more general point of view. The
present work aims at filling some of the gaps that are left in the
study of the oscillations of relay feedback systems.

In this paper, we propose using Tsypkin’s approach [18] in
order to determine the limit cycles of mixed-signal nonlinear
systems consisting of:

• one possibly nonideal relay;
• one discrete-time block with a zeroth-order hold;

1057-7122/$20.00 © 2006 IEEE
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Fig. 3. Tsypkin’s approach may be extended to both systems S (top) and S
(bottom).

• one continuous time block.
These systems are represented in Fig. 3.

We first briefly restate Tsypkin’s method for determining the
oscillation frequencies of continuous nonlinear systems. Then,
we show how to extend this method to the case of the simple
and complex oscillations of mixed-signal systems. A method
for determining the shape of the complex oscillations is given
and illustrated and its implementation is discussed.

II. EXTENSION OF TSYPKIN’S METHOD TO MIXED-SIGNAL

NONLINEAR SYSTEMS

A. Tsypkin’s Method Applied to Continuous Systems

Let us consider a system consisting of a possibly non-
ideal relay and a continuous time system, as in Fig. 4. Tsypkin’s
method may be used in order to determine the existence of pos-
sible limit cycles of and their characteristics (pulsation and
amplitude). In the case of simple oscillations of the system,
the output of the relay is a square wave with period .
Tsypkin’s criterion, which is closely related to Hamel’s [19],
consists in saying that oscillates with period if the relay’s
switching conditions are met periodically. Taking the origin of
time on a rising edge of the relay, these switching conditions
may be expressed as

(1)

where is the relay’s input. Verifying (1) for a given then
becomes a simple matter of:

• expressing the relay’s output as a Fourier series;
• expressing the time response of to this input, also

as a Fourier series;
• evaluating this time response and its first derivative for

.

There usually exists no analytical solution to (1); the oscil-
lation criterion must then be checked in a graphical way, for
example, by plotting (2) in the complex plane

(2)

Fig. 4. Tsypkin’s approach is usually applied to systems consisting of one relay
and one continuous block.

and finding its intersection with the real axis. For the differen-
tiator system of Fig. 1, is given in Fig. 5 for and

.

B. Extension of Tsypkin’s Method to Mixed-Signal Systems

We will presently show how Tsypkin’s criterion may be used
to determine the oscillation frequencies of systems or .
Let us first consider system of Fig. 3. There are two reasons
why applying Tsypkin’s method “as is” to this system is not
very practical for the following reasons:

• the spectrum folding due to the presence of the sampled
system, the Fourier series representation of the relay’s
input involves a double sum;

• the delay between the relay’s switching moment and the
next sampling moment is a priori unknown.

In order to apply Tsypkin’s method to or , they must first
be transformed into a particular—or “canonical”—form by sub-
jecting them to a series of elementary operations. After this pre-
liminary step, we will show how Tsypkin’s criterion may be ex-
tended to the canonical system to determine its oscillation fre-
quencies.

1) Canonical Form of the System: Let us transform system
so that the discrete part consists only of a switch and of a

zeroth-order hold. This can be done by replacing the unit dis-
crete-time delays of filter by unit continuous-time delays
and by placing the resulting filter after the ze-
roth-order hold (Fig. 6). This transformation is in no way ap-
proximate because only “sees” sampled-and-held
signals. Because of this equivalence between the original and
the transformed system, it is clear that neither the output of the
comparator nor its input have changed.

The discrete part of the system now consists only of a switch
and of a zeroth-order hold, and the transformation can be com-
pleted by swapping the discrete-time block and the comparator.
This transformation leaves the output of the continuous block
unchanged because both operations (sampling and taking the
sign) commute as long as the sampling moments are equivalent
(Fig. 7). It is then equivalent to study the oscillations of the orig-
inal system and those of its canonical form . System
is represented in Fig. 8.

In order to transform into its canonical form, only one
transformation step is needed: the discrete-time delays are
changed into continuous-time delays, and the resulting filter is
placed between and the sampling stage. This leaves the
output of unchanged and, thus, is transformed into its
equivalent canonical form .

For example, to obtain the canonical form of the pulse-deliv-
ering system of Fig. 2, one needs to follow the transformation
steps shown in Fig. 9.
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Fig. 5. Typical Tsypkin’s locus �(�=!) for the system of Fig. 1 (left). The value of the oscillation period is given by the intersection with the real axis. "(�=!)
is represented on the right.

Fig. 6. System S is transformed into an equivalent system, in which the dis-
crete delays have been replaced by continuous ones.

2) Application of Tsypkin’s Criterion to a Canonical System
in the Case of Simple Oscillations: Let us first consider the case
of simple oscillations of the canonical system , i.e., the case
when the output of the comparator is a periodic square signal
with amplitude . Due to the fact that the relay cannot switch
between samples because of the presence of the zeroth-order
hold, oscillations with period are possible if and only if
is an even multiple of sampling period

(3)

Since the relay’s input is equal to at any sampling
moment, the switching conditions can be written as

(4)

Now, following Tsypkin’s method, the origin of time is taken
on a rising edge of the comparator. then has the following
Fourier series development:

(5)

In the frequency domain, this is equivalent to

(6)

The output of the continuous block may then be written as

(7)

In the time domain, (4) can be rewritten as

(8)

Verifying (8) now only requires computing the values of in-
teger that meet the switching conditions. As opposed to the
continuous-time case, the oscillation frequency can always be
exactly determined.

Implementation of (8) is fairly straightforward and leads to
very fast calculations. One must keep in mind that (8) may have
to be adapted to take into account possible poles of in

. In this situation, an arbitrary offset, which depends on
the initial state of , must be added to the oscillation criterion.
(8) then becomes

(9)
For example, let us consider the system of Fig. 2, with

, , and . The extended Tsypkin’s locus

is shown in Fig. 10. This figure shows that oscillations may take
place in the system with period or with period

.
Finally, one should check for supplementary zero-crossings

of between 0 and : if there are none, then the predicted
oscillations are correct and may occur in the system. For the
chosen set of parameters , , and , the time response of the
system is shown in Fig. 11, for . For ,
several supplementary zero-crossings can be found.



IE
EE

Pr
oo

f

4 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 12, DECEMBER 2006

Fig. 7. (a) Original signal. The result (d) is identical whether the original signal is (b) first sampled (c) or not, as long as the sampling moments (circles) are the
same.

Fig. 8. Canonical form S of systems S and S .

Let us now consider the case when the portions of the ex-
tended Tsypkin’s locus that belong to the upper left quadrant (if
any) do not contain any point that verifies (Fig. 12).
Let us also suppose that these portions correspond values of

comprised between and . From contin-
uous-time theory, it is intuitive that the system should oscil-
late with a period belonging to this range. Nevertheless, due
to the width-quantization effect of the sampling-and-holding
stage, this is not possible stricto sensu and results in complex
oscillations of the system, which we will discuss next.

3) Application of Tsypkin’s Criterion to a Canonical System
in the Case of Complex Oscillations: There are many situations
in which the relay’s output is no longer a simple square-wave
with period . This is in fact much more common in hybrid
systems than in continuous ones. For example, consider the case
of the system shown in Fig. 1. In the absence of a sampling-
and-holding stage, an arbitrarily small change in the spring’s
stiffness results in a small change in the oscillation frequency,
i.e., in the width of the square wave. This is no longer possible in

the case of the system of Fig. 2, because the width of the square
wave has to be an integer multiple of and it is, therefore,
quantized. However, the relay’s output can still be a periodic
signal. Let us call its period and the number of times the
comparator switches to the high position during period . We
call “sub-period” the time between any two successive rising
edges—there are sub-periods in period . Each sub-period is
divided in two intervals—there are such intervals in period
(Fig. 13). Symbols and designate the number of samples
(or width) of the th sub-period and the width of the th interval,
respectively.

We call “mean period” the quantity

(10)

It is the mean period i.e., the average value of the time between
two rising edges, that most period-meters measure [20]. Since

is necessarily an integer multiple of the sampling period, it
follows that:

(11)

and

(12)

We notice that small changes in any of the system’s parame-
ters induce changes in the value of . For example, the value
of the measured period versus the system’s stiffness has been
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Fig. 9. System of Fig. 2 is transformed in its canonical form in three steps.

Fig. 10. Extended Tsypkin’s locus � (�=!) for the system of Fig. 2. The cir-
cles correspond to values of T that are even multiples of the sampling period.
An oscillation with period T = 2nT may occur in the mixed-signal system
iff the corresponding circle lies in the upper left quadrant [from (8)].

Fig. 11. "(t) for T = 16T .

Fig. 12. The only value of T = 2nT which belongs to the upper-left quad-
rant is T = 52T . However, this oscillation period is not possible (because of
the existence of several supplementary zero-crossings). Nevertheless, the curve
suggests that a limit cycle may exist between T = 16T and T = 18T .

plotted in Fig. 14, for the continuous system of Fig. 1 and for
the hybrid system of Fig. 2 with s and

These changes in the mean period correspond to variations
in the number of sub-periods and in the (quantized) widths
of these sub-periods. Hence, in an averaged sense, the apparent
period of the system is not necessarily an even integer multiple
of the sampling period. The remainder of this paper is devoted
to the common case of systems for which the width of each
sub-period only takes two values, i.e., or ,
and is defined in (12).

In this case, we consider only three possible sub-periods,
which are shown in Fig. 15. We now restate Tsypkin’s crite-
rion in the case of complex oscillations of hybrid systems. If the
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Fig. 13. Complex oscillations with q = 4 sub-periods.

Fig. 14. Changes in the system’s stiffness induce changes in the period of the
continuous system as well as in the mean period of the hybrid system. Non-
integer and odd values of T =T denote the existence of complex oscillations.
The hybrid system’s response is similar to the devil’s staircases appearing in
�� modulation [16].

relay’s output is periodic, it can be expressed as a Fourier
series

Taking the origin of time on a rising edge yields

if

and . The same notation as in [18] is used here, so that
designates the th switching moment (Fig. 13). The

are all necessarily rational numbers. An odd subscript denotes a
falling edge, while an even subscript denotes a rising edge.

Oscillations are possible only if the switching conditions (13)
are verified for

(13)

As stated in Section 2-B-2, this criterion may be adapted if
transfer function has a pole in

(14)
One must note that (13) and (14) are valid even if there are

more than three possible sub-periods. In the most general case,
as in the case of complex oscillations of continuous systems,
there is no simple way of determining the shape of the complex
oscillations (the ): one may try to maximize a scalar product
between a trial shape and the corresponding system output. Nev-
ertheless this is rather unpractical because of the relay’s nonlin-
earity. One may also view this problem as a frequency-modula-
tion or pulse-width modulation issue. In the case there are only
three possibilities for each of the sub-periods, Tsypkin’s method
can be taken one step further and one may try to determine the
shape of the complex oscillations in a relatively simple way.

4) Practical Determination of Oscillation Shape: As it has
already been stated, the value of may be deduced from the
curves obtained when checking for simple oscillations. The
most direct method for building the complex oscillations then
consists in trying, for a given and a given , all possible com-
binations of sub-periods. Since there are only three possibilities
for each sub-period (Fig. 15) and because of the -periodicity
of the pattern, finding all combinations is equivalent to solving
the so-called “necklace problem”: finding all the different
necklaces that can be made with beads of different colours.
The specificity of the problem lies in the topological invariance
of the necklace through any rotation [21]. Here, each possible
sub-period (Fig. 15) corresponds to a colour and the periodicity
of the complex oscillations corresponds to the rotation invari-
ance of the necklace. However, solving the necklace problem
with beads of three different colours yields about dif-
ferent combinations [22]. Testing all combinations becomes
very lengthy as grows and limits the applicability of this
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Fig. 15. For a given value of r, only three possible sub-periods are considered. Here, r = 6. The resulting mean period T lies between 6T and 7T .

Fig. 16. Costs obtained for all necklace combinations as a function of the mean period. Here, the solution is obtained for q = 8 and T = 62+ 5=8. For each
value of q � 8, the cost is minimized for a combination corresponding to the value of T closest to T . For example, there are three possible values of the mean
period for q = 3 (upper left figure) and the cost function is minimal for a necklace with mean period T = 62 + 2=3.

method to on a standard PC (2 GHz CPU, 1 Go RAM).
Other methods must then be used to speed up the process of
characterizing the complex oscillations of the system.

Let us suppose we are searching for the form of the quan-
tized complex oscillations of a given system. As stated in the
previous paragraph, the most straightforward manner consists
in trying for each all combinations of widths. One may give
this problem a more formal definition by introducing for each
combination a cost as

(15)

and by minimizing it. In (15), stands for the cardinality of
set . This cost function may vary between 0 and 1, 0 corre-
sponding to possible oscillations of the system. Typical results
are shown in Fig. 16.

As it can be seen in Fig. 16, one may try at the th step to
use the information contained in the previous steps and focus
on necklaces of a given density (mean period) in order to ac-
celerate the convergence of the process: necklace combinations
with densities too different from that of the minimum of the pre-
vious step are not tested. Depending on the value of the mean
period, this can greatly reduce the computational costs. This
method can also be used if only an estimation of is needed.

Another intuitive method for reducing the number of trials
is, for a given mean period and a given , to concentrate
on the necklaces yielding the periodic patterns that are most
similar to a square wave of period . This idea is based on
the assumption that the system has as “periodic” a behaviour
as possible and that the comparator’s output is, on the whole, as

“square” as possible. A systematic solution to this problem [16],
[17] is to use Euclid’s algorithm. The same results may also be
obtained by using the more straightforward approach described
in the next paragraph.

For a given value of and of , let be the integer such that

Let us suppose, to simplify notations, that is even. If is
odd, one may write

and the following method may also be applied. If and are
co-prime, the sequences of intervals that most
resemble a square wave of period are

(16)

or by

(17)

In (16) and (17), denotes the floor function and the
ceiling function. If is odd, these equations yield two different
sequences. However, (16) and (17) yield the same result if is
even. It must be noted that the periodic patterns generated with
(16) and (17) maximize the circular correlation with a square
wave of period . For example, for ,
(16) or (17) yields
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For , (16) gives

and (17) gives

These two results are equivalent through a one interval shift, but
no sub-period shift can transform one into the other.

Let us now consider the case when

and and are not co-prime: in that case, Euclid’s algorithm
no longer applies. Let us then call their greatest common
divisor, such that

One can build some sequences of intervals that maximize
the correlation with a square wave of period in the following
way. First, we use (16) and (17) to build the -long sequence(s)
corresponding to . If is even, the -long sequence is ob-
tained by repeating the elementary sequence times: it is there-
fore unnecessary to test this possibility since it will lead to the
same results as those of the elementary sequence. If is odd,
the sequence is built like a necklace of length with beads of
two colours, corresponding to the two elementary sequences ob-
tained with (16) and (17). The sequences built in such a way also
maximize the circular correlation with a square wave of period

. For example, for , three possibilities
need to be tested

For , four possibilities need to be tested

We refer to this method as the “reduced necklace” method.
This method has a much lower computational cost than the “full
necklace” method. Moreover, it is possible to test for very long
limit cycles (up to on a standard PC) when using the
reduced necklace method. Finally, in all the cases on which the
reduced necklace was tested, the “full necklace” did not yield
any supplementary solution. Although this observation consti-

Fig. 17. Quantized complex oscillations determined for S (Fig. 8) can be ob-
served inS [Fig. 3(a)] by adding a zeroth-order hold directly after the sampling
stage.

tutes no formal proof, it points at the relevance of the reduced
necklace method.

Finally, an alternate method for reducing the computational
costs is simply to evaluate the time response of to the com-
plex oscillations as a finite sum over its poles, as in Hamel’s
method [19], rather than as an infinite Fourier series.

III. APPLICATION AND RESULTS

A. Non-Canonical Case

It has been shown in Section II how the characteristics—mean
period, sub-periods—of a canonical system may be calculated.
Let us consider the case of a mixed-signal nonlinear system that
is not already in the canonical form, say the system of Fig. 2.
The proposed method still yields the correct value of the relay’s
input at the sampling moments and the correct value of the
mean period of the system, which are unchanged by the trans-
formation to the noncanonical case. However, the signal at the
relay’s output does not necessarily correspond to the quantized
complex oscillations we determined in Section II. In the case
of system , these can be observed by simply adding a sam-
pling-and-holding stage at the output of the relay, as shown in
Fig. 17. In the case of system , the complex oscillations with
quantized widths can be observed directly at the comparator’s
output.

B. Results

To illustrate the proposed approach, let us first consider a
system composed of a continuous second-order system

an ideal comparator, and a discrete-time integrator

with sampling period s. In order to determine the os-
cillation frequency of this system, the following three methods
are used:

• a classical Tsypkin analysis, in which the effect of sam-
pling is neglected;

• a mixed-signal simulation, performed with Matlab/
Simulink, in which the value of the mean period is ob-
tained by averaging the time between two rising edges at
the comparator’s output;
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• an extended Tsypkin analysis, as described in the previous
parts, using criterion (14) because of the presence of the
integrator.

In a classical Tsypkin analysis of the system, the influence of
sampling is neglected and Tsypkin’s criterion is applied to the
continuous transfer function

The calculated oscillations are found to have approximately pe-
riod s.

This result is inaccurate because both the simulation and the
extended Tsypkin’s criterion (14) produce s. How-
ever, the accuracy of the simulation depends on the number of
points taken to obtain the average value of the “period” of the os-
cillations. The result is exact only when a multiple of 5 is chosen
because the mean period of the comparator’s output is actually

as obtained by the calculation of the extended Tsypkin’s crite-
rion.

If we slightly change the parameters of the continuous system
to

the extended Tsypkin’s criterion (14) predicts different oscilla-
tion possibilities, depending on the following initial conditions.

• with

• with

• with

• with

The reduced necklace method was used to determine the shape
of these oscillations. We have not checked for solutions with

, except for co-prime and , for which there did not seem
to be other possible oscillations for . The full necklace
method was used in order to find other possible solutions, but
none were found.

These values of may be compared with the output of
Tsypkin’s method for continuous systems, which yields a pe-
riodic oscillation with , or with those obtained
with a mixed-signal simulation. In the latter case, the complete
range of possible initial conditions must be tried if all possible
oscillations are to be found. Added to the relative inaccuracy of

the computed value of the mean period, it makes the simulation
approach rather unpractical and, in our point of view, stresses
the interest of our own method.

IV. CONCLUSION

In this paper, we have shown how Tsypkin’s approach for
determining the oscillation frequencies of continuous non-
linear systems could be extended to a class of mixed-signal
nonlinear systems, consisting of one possibly nonideal relay,
one discrete-time system with a zeroth-order hold, and one
continuous system. Starting from a typical configuration, we
showed how to convert these systems into an equivalent canon-
ical form to which Tsypkin’s approach can be applied. Then,
we considered the case of simple oscillations of the system
for which it was shown that the period is necessarily an even
multiple of the sampling period. Two oscillation criteria were
established, depending on whether the equivalent continuous
transfer function has a pole in zero or not. The case of complex
oscillations of the system was addressed in a similar fashion
and, because of the quantization effects induced by the dis-
crete-time stage, Tsypkin’s approach could then be taken one
step further: we showed how, using combinatory analysis and
a simplified version of Euclid’s algorithm, the shape of the
complex oscillations could be determined in many situations.
We also illustrated this approach and proposed several methods
for improving its implementation.

These theoretical results can be used for the design and the
analysis of resonant MEMS. Promising developments include
the study of the impulse-delivering system [10] of Fig. 2 or the
use of the shape of the quantized complex oscillations to deter-
mine the parameters of simple systems [15].
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