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Abstract— The analog parts of mixed analog-digital systems
are always subject to some imperfections. Considering Linear
Time-Invariant (LTI) analog circuits, the real transfer function
is then practically different from the desired nominal one and
includes some deviations. The goal of this paper is to offer a
model which digitally estimates the deviations from typical values
supposing that the only available information is the sampled
analog output (blind estimation). The model is independent from
the type of the imperfections sources and is applicable when the
input is a white noise (either Gaussian or non-Gaussian). The
model has been applied to several RC and RLC circuits and the
performance of the estimation is studied. The simulations show
that the model can estimate the analog imperfections of ±20%

with a precision ±4% in first- and second-order circuits which
may be useful in correction purposes such as compensation.

I. INTRODUCTION

Despite the fast development of the digital technology and

signal processing methods, it is still at times required to

have the analog circuits either through an analog system or

along with a digital part at the hybrid systems. Both discrete

and integrated Electronic components of analog circuits are

always subject to some random deviations from the nominal

values. Therefore, the electronic circuits of LTI systems are

characterized by the transfer functions which include some

uncertainties. The nominator and the denominator coefficients

of the transfer function may be considered as random numbers.

The average values of the coefficients are the typical values.

The deviations from typical values are unknown. The analog

imperfections associated with the fabrication process can be

considered as time-independent factors. However, the analog

imperfections include some time-varying contributions related

to some phenomena such as the operative temperature. To

lessen the consequences of the fabrication imperfections of

analog circuits, some possibilities exist such as laser trimming

in the case of integrated circuits at the production phase.

Laser trimming is generally too expensive. Moreover, the

time-varying imperfections can not be compensated during

the fabrication phase. Therefore, digital compensation can

be considered as a suitable solution particularly when mixed

(analog-digital) circuits are dealt with.

There are some applications in which analog imperfections

may deteriorate the performance or even make the realization

impossible. Sigma-delta A/D converters belong to an exem-

plary domain of this subject. They are very sensitive to the

nonlinearity of their internal multi-bit D/A converters [1].

Cascade architecture (MASH) has been proposed to handle

the problems of high sensitivity and instability from which the

sigma-delta modulators suffer. In return, a great sensitivity to

analog circuit imperfections emerge when MASH is used [1].

In Switched-Capacitor (SC) circuits, these imperfections are

mostly related to finite op-amp gains, capacitor ratio errors and

settling times [2]. Another example is the parallel structure of

Hybrid Filter Bank (HFB) A/D converters [3]. HFB-based A/D

converters are subject to a very high sensitivity upon analog

imperfections [4] [5]. To overcome the problem of analog

imperfections in wide-band parallel HFB-based A/D con-

verters, Velazques proposed a digital calibration method [6].

The calibration was established in the whole spectrum but

the adaptive compensation of the comb filter was classified

according to the different origins of the imperfections. Till

now, most of digital compensation techniques dealt only with

specific imperfections (for example only with capacitor ratio

or with finite op-amp gain error). Accordingly, they are not

generic methods and are applicable only for the supposed

special cases. Besides, they sometimes utilize a reference

signal that necessitates to use a subsystem which is completely

dependent on the system [2] [7].

Thus, it is necessary to look for a general method so as

to be able to estimate the real parameters of analog circuits

using only the output of the systems. The estimation method

has to be independent of the type and the origins of the

errors. Then, one would be able to digitally compensate

the analog imperfections of the electronic circuits. It will

be very useful particularly for mixed analog-digital circuits.

Digital estimation of analog imperfections would be used for

compensating purposes. Accordingly, calibration phase could

be omitted in fabrication process of electronic circuits. On the

other hand, time-varying parameters (especially temperature-

dependent factors) would be possible to be compensated in a

real-time manner.

In this paper, a model is proposed for the blind estimation

of analog imperfections. RC and RLC circuits have been con-

sidered for the simulations as the exemplary analog filters as

these analog filters are used in the HFB-based A/D converters

proposed by Petrescu et. al. [4] [5]. However, the proposed

model is totally general and is applicable to other circuits and

applications.



II. DIGITAL ESTIMATION OF ANALOG IMPERFECTIONS

A. Problem definition and linearization

Considering system in figure 1, it is supposed that the

Nyquist sampling rate has been respected and that the sampled

output of the system y[n] is the only available data. The

problem is now to estimate the real spectral parameters of

the circuit (coefficients of H(s)) using the only available data

y[n]. Regarding to the problem of analog imperfections, the

analog circuit
LTI

TH s

y t( )

( )

x t( ) y n[ ]

Fig. 1. An arbitrary LTI analog circuit with transfer function of H(s). y[n]
represents the output after sampling.

coefficients of the numerator and the denominator of H(s)
are the random variables which have the different distributions

depending on the fabrication factors, the number and the type

of the electronic elements and the structure of the circuit.

The central values (expectation) of these parameters are often

known but the real values are subject to a random additive error

or deviation from the typical values. Analog imperfections

cause a change in the coefficients of H(s) but they have

no effect on the order of the system. Accordingly, one can

try to estimate the real coefficients in order to compensate

the analog imperfections as the first and the most direct way.

An algorithm is then required to directly estimate the relative

imperfections through the output samples.

It is supposed to have K unknown parameters α =
[α1, α2, . . . , αK ]T through which H(s) is described. These

parameters may be either the coefficients of H(s) or some

functions of the coefficients (such as cut-off frequency or res-

onance frequency and quality factor for first-order and second-

order analog circuits respectively). The transfer function of the

analog circuit can be described as follows:

H(s) = g(α, s) (1)

Each element αi of the vector α is supposed to be randomly

distributed around a known central expected value αi◦ :

αi = αi◦ + △αi

= αi◦(1 + δαi
) (2)

where

δαi
=

△αi

αi◦

i = 1, . . . , K

that △αi is a random variable which represents the total effects

of analog imperfections on αi. Therefore, respective distribu-

tion is not necessarily Gaussian even in the case of Gaussian

fabrication errors. The objective is to estimate the relative

imperfection δαi
. In general (even for first order RC filter),

the imperfection parameters have a nonlinear contribution in

the transfer function. Therefore, it is proposed to use the fist-

order linear approximation using the Taylor development of

the transfer function assuming δαi
≪ 1. Thus, it is concluded

that:

H(s) ∼= g(α◦, s) +

K
∑

i=1

δαi
· (αi

∂g(α, s)

∂αi

)

∣

∣

∣

∣

α=α◦

= H◦(s) +

K
∑

i=1

δαi
· Hi(s) (3)

where H◦(s) is supposed to be the transfer function of the

circuit when there is no imperfection and the other transfer

functions are defined as follows:

Hi(s) = αi

∂g(α, s)

∂αi

∣

∣

∣

∣

α=α◦

i = 1, 2, . . . , K (4)

that Hi(s) represents the sensitivity function associated to

the parameter αi. Equally, the following relationship can be

established in the time domain as follows:

h(t) ∼= h◦(t) +

K
∑

i=1

δαi
· hi(t) (5)

where each hi(t) is the impulse response associated with

the respective transfer function Hi(s). hi(t) is independent

of the input and output of the system as well as of the

imperfections. According to equation 4, it has no dependence

on the imperfections neither on input/output signals.

B. Second-Order Statistics equations

Figure 1 is considered. If the input is supposed to be a white

noise (either Gaussian or non-Gaussian process), the following

equation will always hold between the second-order moments

of the input x(t) and the analog output signal y(t) [8]:

σ2
y = σ2

x

∫

(h(t))2dt (6)

where σ2
x and σ2

y are the input and output variances re-

spectively. Supposing that the filter H(s) is band limited

and using sufficiently high sampling rate, equation 6 can be

approximated in discrete-time domain as following:

σ2
y
∼= σ2

x

∑

n

(h[n])2 (7)

And using equations 5, 6 and 7 along with linear approxi-

mation, the following relationship is obtained:

σ2
y

σ2
x

∼=
∑

n

h◦[n]2 + 2δα1

∑

n

h1[n].h◦[n]

+ . . . + 2δαK

∑

n

hK [n].h◦[n] (8)

where the relative imperfections and input variance are un-

known. K additional equations have to be established for

reaching the unknown relative imperfections. For this purpose,

it is proposed to choose K auxiliary FIR filters which are

applied separately to the system output, y[n]. For instance,



figure 2 shows this process after applying ith auxiliary FIR

filter fi[n]. Then, equation 8 would be possible to be rewritten

for each new output signal vi[n] versus original input x(t) as

the convolution of two filters h[n] and fi[n] is an LTI filter.

Applying equation 8 to this new configuration, the following

relationship yields:

σ2
vi

σ2
x

∼=
∑

n

s◦[n]2 + 2δα1

∑

n

s1[n].s◦[n]

+ · · · + 2δαK

∑

n

sK [n].s◦[n] (9)

that sj [n] is an intermediate impulse response defined as

follows:

sj [n] = hj [n] ⋆ f [n] j ∈ {◦, 1, 2, · · · ,K}

where ⋆ represents the convolution operation.

LTI
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Fig. 2. An LTI analog circuit with transfer function of H(s) to which another
auxiliary FIR filter of Fi(z) has been applied.

Some choices of auxiliary FIR filters have been tried in

the simulations. An FIR filter f [n] approximating the inverse

of typical transfer function H◦(s) shows a good performance

when K = 1. For K > 1, it is proposed to have a

quasi-orthogonality in frequency domain. This means that K

mutually orthogonal FIR filters must be chosen. For example,

kth FIR filter fk[n] is a filter with pass band [(k − 1) π
T

, k π
T

]
where T is the sampling period and 1 ≤ k ≤ K.

III. IMPLEMENTATION OF THE ESTIMATION ALGORITHM

A. Estimation algorithm

Considering equations 8 and 9, there will exist K + 1
equations as following:























C◦◦δα1
+ · · · + C◦KδαK

+ (σ2
y) 1

σ2
x

= d◦

C11δα1
+ · · · + C1KδαK

+ (σ2
v1

) 1
σ2

x

= d1

...
...

...

CK1δα1
+ · · · + CKKδαK

+ (σ2
vK

) 1
σ2

x

= dK

(10)

where the (K + 1) unknown parameters are

{δα1
, δα2

, . . . , δαK
, 1

σ2
x

}. All the coefficients Cij and di

are independent of the input and imperfections (refer to the

previous subsection). Invoking the set of equations (10) and

using Cramer method, the unknown relative imperfection δαi

is found as follows:

δαi
=

b◦σ
2
y +

∑K

k=1 bkσ2
vk

a◦σ2
y +

∑K

k=1 akσ2
vk

(11)

where B(i) = [b◦, · · · , bK , a◦, · · · , aK ] is the coefficients

vector associated with the model of δαi
. To calculate the

coefficients, some known imperfections are applied to the

system and the coefficients are then approximated using the

Least Squares (LS) method and the gradient algorithm. Thus,

N known relative imperfections are selected and the system

is simulated using a white noise at the input. For having an

overdetermined problem, N is considered much higher than K

(N ≫ K). Therefore, the vector of coefficients B(i) associated

with the relative imperfection δαi
can be approximated as

follows:

B(i) = arg min ‖δm
αi

− δr
αi
‖2 (12)

that δm
αi

and δr
αi

represent the model and real values of

the relative imperfection δαi
. This model can be separately

established for each unknown imperfection (δαi
, 1 ≤ i ≤ K).

B. Simulation results

The algorithm described in the previous section has been

applied to several first- and second-order circuits. Implementa-

tion of the procedure depends on the number of relative imper-

fections which are present in the problem. Therefore, the result

of the blind estimation for relative imperfections are discussed

depending on the number of unknown variables. An analog cir-
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Fig. 3. Impulse response (above) and frequency spectrum (below) due to
the estimated inverse filter of an RC circuit.

cuit may include only one unknown variable independent of its

order. If there is only an unknown imperfection variable, one

auxiliary filter will be required. For respective RC and RLC

circuits, an approximative inverse FIR filter with three non-

zero coefficients has been used. The impulse and frequency

response of that auxiliary FIR filter has been shown in figure 3.

This FIR filter was obtained by blind equalization technique

applied to an RC circuit [8]. The model is implemented for an

RC circuit with the imperfections considered through its cut-

off frequency. The estimation has been implemented for the

imperfection range of ±20%. Figure 4 shows the estimated

deviation from typical values versus the real values in this case.

The average precision of this estimation is ±2.7% (ratio of the

standard deviation of the estimation errors on real values in

percent). Figure 5 shows the result of the estimation associated

with an RLC second-order circuit. In this case, the resonance

frequency is subject to the analog imperfections. Estimation is
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Fig. 4. Estimated deviation (solid) from typical value of cut-off frequency
versus real values for an RC circuit. The dashed line represents the ideal
response.

again regarded for a range of ±20%. The same auxiliary filter

has been again used. There is a standard deviation of ±3.9%
for the errors of this estimation. It is seen that the quality of

the estimation is lower in the case of second-order circuit.
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Fig. 5. Estimated deviation (solid) from typical value of resonance frequency
versus real values for an RLC circuit. The dashed line represents the ideal
response.

This method has also been used in the case of two unknown

variables, considering an RC circuit including some imper-

fections applied on its DC-gain and cut-off frequency. The

estimation is implemented for the imperfections in the range

of ±20%. Figure 6 demonstrates the result of the estimation.

The values of standard deviation for the estimation errors are

±2.1% and ±4.6% associated to the parameters of DC-gain

and cut-off frequency respectively. Considering a shorter range

of estimation, the performance is developed.

IV. CONCLUSION

The estimation of analog circuit imperfections involved in

analog or hybrid systems was studied in this paper. A model

for approximating the imperfections was extracted using a lin-
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Fig. 6. Estimated deviation (solid) from typical value versus real values for
DC-gain (above) and cut-off frequency (below) of an RC circuit. The dashed
lines represent the ideal responses.

ear estimation of the spectral imperfections due to analog sys-

tems. This model necessitates an analog input which is a white

or i.i.d. (independent and identically distributed) stochastic

process. Supposing some small errors at the coefficients of

the transfer function due to analog system, the proposed model

approximates these errors using only the sampled output of the

system. So, an imperfection of 20% may be estimated with a

significant precision which allows a further correction of the

output signal. The model needs some auxiliary FIR digital

filters. Orthogonality is the condition proposed for choosing

the auxiliary FIR filters. The blind estimation method of the

model is valid for both Gaussian and non-Gaussian distributed

signals.
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