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Management of Uncertainty within Estimation in Dynamical Context
Application to MEMS

Hana Baili

Abstract— A probabilistic approach is proposed to manage beams which are about theaxis flex; their deformation is
uncertainty when dealing with estimation in dynamical models.  denotedd(t,y), 0 <y < |, wherel is the beam length. It
The approach utilizes a linear integral transformation and relies is well known thaTt thg acceleration, which is the quantity

on McShane’s theory of stochastic differential equations. The to b d by th | ter i " | to th
starting point is a knowledge-based model where the estimation 0 be measured by the accelerometer, 1S proportional to the

problem is set. The approach is quite general, it is explained Plate displacemend(t,l). So the former is to be estimated
here by the light of an engineering application. whenh varies in a given interval.

The model for this estimation problem is the following
nonhomogeneous linear partial differential equation with

The starting point in the resolution of an estimatiorhomogeneous linear imposed conditions.
problem is the modeling: mathematical description of the

I. INTRODUCTION

ine it ; 9%d ad yh® 9%

problem. When the model comes from physics, it is said 5p¢ = t,y) 4+ U (t,y) + 2 (ty) = f(t,
knowledge-based model, as opposed to black-box model. ot Ly) i (L) 12(1-v?) dYA( V)= 1Y)
model consists of a set of relations between some quantities ad @)
among them appears the one to be estimated. The term d(0,y) = F(O,y)zo (2
“dynamical” in the title refers to the evolution in time of t
some quantities, and means that the model comprises at q ad
least one dynamical relation. In some model, the quantities (t,0)= Fy(t’o) =0 ®)
that when fixed cause the others to be uniquely determined
are called “model’s data” such as the imposed conditions on od 9% B

X . - . . —(t,H)===(@1)=0 (4)
the solution of an ordinary or partial differential equation, oy ay3

obser\{atlons, controls, parame'ter.s, etc. Often some of t ?H, y, and v are respectively the material density of the
model’'s data are unknown, this is expressed by the ter

“ o o . ate, the air viscosity, Young’s modulus of elasticity and
uncertainty”. Prior information about some unknown cal

o . ) _ ) oisson’s ratiof(t,y) is a forcing function such that

be inquired. It will consist of statistics that approximate

some of its moments, if it is random or of some set where Ft,y) = A sign((t y)) )
it takes its values if it is deterministic. So the estimation ’ ot )

method has to come face to face with the propagation of th
information from the unknown model’s data to the quantit
to be estimated. The management of uncertainty withi
dynamical models implies stochastic processes calculu
McShane's theory is used in this instance [1].

ehere)\ is a positive real. When we modblby a random
ariable of a given probability density on a given interval,

é&t,l) becomes a random process. In this instance, estimation

should concern its probability density.

The paper is organized as follows. Section 2 is the modeling

8f the estimation problem by a stochastic differential equa-

ggn (SDE). Section 3 is the density estimation, of Monte-
arlo type using a demarginalization technique. Section 4

oncludes the paper.

The application here is about the robust design for
microaccelerometer, as regards to the uncertainties in t
fabrication process: manufacturing tolerances and error,
Actually the effect of manufacturing tolerances and error§
in a microelectromechanical system (MEMS) is more I
significant than in a macro-scaled one; a robust design

of a MEMS passes through the study of such an effect. Consider the linear integral transformation

Here we assume that uncertainty in the fabrication process |

concerns only the thicknesh of supporting beams in D(t):/ K(y)d(t,y)dy. (6)

the microaccelerometer. The latter is also constituted of a ) '0_ .

vibrating plate, and electrodes for driving and sensing. IEhe relevant integral (6) is assumed to exist as well as a
is assumed that the vibrating plate oscillates only in ongonvergent inversion formula. The functid(y) is called

direction, thex-axis. When an acceleration is applied théhe kernel; it is to be constructed in the following. To apply
the transformation on (1), we have to calculate
Hana Baili is with Department of Signal Processing and Electronic Sys- |
tems,Ecole Sugrieure dElectricite, 3 rue Joliot-Curie, Plateau de Moulon,
91192 Gif sur Yvette, Frandghana. bai | i @upel ec. fr) /0 K(y)O(d)(t,y)dy
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whereO(d)(t,y) = L;ff(t,y). Partial integration gives

23d ,aZd
/K d)(t,y)dy = { FNa Kdyz
04 @ 1@
k24 gl / K@ (y)d(t,y)dy
ay y=0 0

Regarding the imposed conditions dft,y) in (3-4), if K(y)
has the following imposed conditions

K(0)=0, 7)
K'(0)=K'(1) =0, ®)
K® (1) =o, ©)
then
[ kwoa)tyay= [ ormdtyay. @0
If K(y) is chosen so that
O(K)(y) = B*K(y), (11)

the expansion are independent of the number of terms in the
sum.

We construct a solution for (1-4) from each trial function
K(y), i.e. considering just one coup[® K(y) as follows:

dit.Y) = (i g0 KO (as)
ask(y) is real, (K.d) = [} KONy =00, 5
R (16)

and this constitutes the inverse formula of the integral
transformation (6).

Initial conditions (2) imply thatD(0) =
addition, (16) and (5) imply that

f(t,y) = A signD(t)K(y)),

0, andD(0) =0. In

and |
F ()= A signd(t)) | K(y) signK(y))dy

We recall that the quantity of interest is the plate displace-

where 3 is some real, then (1) transforms into an ordmarynemd(t )

differential equation:

pyh® _
for the unknown integral transfor®(t) of d(t,y), where
F(t) = f(')K(y)f(Ly)dy. In the following solutions of (11)
for the different possible values @ permitting to satisfy
(7-9) are sought. We find the following discrete set fr
and the corresponding solutioisy) of (11):

phD(t) + uD(t) + (12)

g= X

I — I ’

Ki(y)=  A(cogBy) —cosh{By)) +
Ayi(sin(By) — sinh(By)),

where (x;,yi) is a point of the plangx,y) € %2 where
y =tanx) andy = —tanh(x) intercept, andA is some real.

D(t)
when the beam thicknegsvaries in a given interval.

dt,1) =

If we set X(t) = D(t) and X2(t) = D(t), we obtain
the following SDE as a model for our estimation problem:
Xt =x2,
BAyh? _ B
120(1—v2)
By, AoK(Y) sign(K(y))dy
ph ph
x1(0)=0, X?0)=0,

whereh is a random variable of a given probability density.

I1l. ESTIMATION
The objective of this section is to estimate the probability

X2 =—

sign(x?),
(7)

Now, the functionK(y) may be superimposed to constructgensity functionsp(t, &) and p(t,v) relative respectively to

a solution for (1-4), i.e. a solution which matches the givefhe stochastic process¥é and X2 in (17), at some time.
forcing function, boundary conditions and initial conditions.Consider the Euler discretization of the SDE (17) at instants
In fact, by construction this function does match the giveR,. |t is worth noting that discretization instants are not

boundary conditions (3-4); in addition{Ki(y)}; form an
orthogonal set, convenient for expandif¢f,y) andd(t,y)
in the form

~ S fK _ (K f)
f(t,y)NiElfI Ki(y), fi= (KK’ (13)
~ . K. - (Khd)
dit,y) = 2 2dI Kiy), di= KiK)' (14)
where (ug,up) = f('J ur(y)*up(y)dy (* denotes the complex

conjugate). (13) and (14) are approximationsf{p,x) and

necessarily equally spaced.

xnl+1 - Xnl = (tn+1 —tn)xﬁv
(18)
4
><n+1 - ><n = 125(1yh v2) (tn+1 t )an
-t ”O“;g)'dyanﬂ ~to) sign(x2),
19)

(18) implies that

d(t,x) respectively, in terms of orthogonal functions, in the

least mean-square error sense. Note that the coefficients of

pxr}+1|xnl,xg =0 (X&Jrl - (an + (thia *tn)xnz)) .



(19) implies that

; (20)

h=h(XZ, )

1
Px2, . ixt.xz = ‘
+1

T 7bPn
chh — %

where p;, is the probability density oh,

4
€= _12p(Bli/vz)(t"+l —ta)X7,

and

precision of our estimation; it is also to be compared with
the latter in terms of simulation cost (time and memory).

According to the notation of section 3, let's takg, =t

and simulate (18-19) at instantg <t; < ... <t, <t. For

t —t, = Top/10 and just 10 simulations, we obtain the
approximations Ofpx1<t) and Px2(t) shown in figures 5
and 6 respectively. For 60 simulations we obtain the result
shown in figures 7 and 8. As suggested, the marginalization
of formula (21) onuv accompanied with empirical mean

formula, give an approximation qjxlm. Up to the inverse

Co= _E(tn+1_tn)xf12+ (thy1 —tn) signx?).  Of thg number of simulations, it is a Dirac series markgd on
p the figures 5 and 7 by symbet. By the same reasoning

(20) is the formula of the change of variables, as whefhe approximation ofpyz, shown in figures 6 and 8, at

conditioned orX? and X2, the random variablexﬁﬂ andh some point of its support is, up to a normalization constant,
are related by one-to-one transformation the sum of point ordinates relative to every small curve

) , G whose support contains that point (these small curves appear
Xir1=cih +F clearly if we zoom in the plot). Even with such a small
_ ) number of simulations of (18-19), and thus highly reduced
where ¢, c; are given above andsz = X5. We assume

) i : i time and memory consumption, the result conforms with
a uniform distribution forh on the interval[hinf,hsug (it he reference and proves to my satisfaction the performance
represents manufacturing tolerances and errors):

of the approach.
1
pn(h)

- hsup— hinf

A Jo K (y)|dy
P

+Cs,

On the other hand, we have

pr}+l,xr12+l<€7U) =E (pxnl+1v 2+1‘X%7X§(£,U))
=E (anlH\Xr},Xﬁ(g) pxr12+l‘xr}7xg(u))

1
))7%
‘2C1h—%%

=E [ 8(e— (G + (this —ta) X3

h=h(v)

(21) Fig. 1.

Plate Displacement
whereE is the mathematical expectation. Note tleatand

c, are functions of the random variablégt and X2. So
Pxt . x2,, may be approximated by empirical mean of the
expression in (21), with respect to th@ and X2. Samples

of theses random variables are obtained from (18-19) and
from samples oh. The densitiespxr}+1 and Pxz , are then
derived by marginalization.

rrrrr

IV. |LLUSTRATION

In order to illustrate the material of the previous ’ ” : * P
sections, the following values are assumeul:= 2320,
y=1709, v =0.25, u = 1000,A = —1e6, hj,;s = 0.8e—6,
hsyp = 1.2e — 6, | = 100 — 6 (S| Units). The plate
displacement and velocity for a realizationtofire reported
in the figure 1 and 2 respectively, corresponding to ten
natural periods of the system (a period amounts aroundA probabilistic approach is proposed to manage uncer-
2e— 6 second, it is denotedp). Figures 3 and 4 show tainty for estimation in dynamical models, when illustrated
approximation of pyi(t,€) and pyz2(t,v), at some fixed on an engineering application. The crucial task within our
instantt, obtained by classical Monte Carlo technique. 300@pproach is the modeling: transformation of the knowledge-
simulations of (18-19) during0,t] are needed for such based model, where the estimation problem is set, to a
approximation. This is our unique reference to evaluatstochastic differential equation. Then, approximating the

Fig. 2. Plate Velocity

V. CONCLUSION
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Fig. 3. Monte Carlo Approximation ofy1
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Fig. 5. Approximation ofpyi
(2]

probability density of its solution achieves the estimation.
For modeling, an original operational technique is used; thé’]
latter does not apply universally, but is often likely to work.
Density approximation is of Monte-Carlo type and uses a
demarginalization formula. Finally, it is worth noting that the
obtained SDE is linear, but this does not affect the generality
of our approach.
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