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Abstract

This paper proposes to apply optimized One-Class Support
Vector Machines (1-SVMs) as a discriminative framework
in order to address a specific audio classification problem.
First, since SVM-based classifier with gaussian RBF ker-
nel is sensitive to the kernel width, the width will be scaled
in a distribution-dependent way permitting to avoid under-
fitting and over-fitting problems. Moreover, an advanced
dissimilarity measure will be introduced. We illustrate the
performance of these methods on an audio database con-
taining environmental sounds that may be of great impor-
tance for surveillance and security applications. The ex-
periments conducted on a multi-class problem show that by
choosing adequately the SVM parameters, we can efficiently
address a sounds classification problem characterized by
complex real-world datasets.

1 Introduction

Support Vector Machine (SVM) classifiers have been shown
to provide better performance than more traditional tech-
niques in many problems, thanks to their ability to general-
ize. In many cases, SVMs outperform most state-of-the-art
classifiers. In recent years, many pattern recognition prob-
lems have been tackled using SVMs, ranging from com-
puter vision to text classification. However, their applica-
tion to computer auditory scene analysis (CASA) and, more
specifically to sound recognition problems, has been very
limited.

In this paper we focus on the specific task of impul-
sive sounds classification for a surveillance application us-
ing several one class SVMs (1-SVMs) [22]. Though they
have been less studied than two-class SVMs (2-SVMs), 1-
SVMs have proved extremely powerful in audio applica-
tions [22, 10, 9]. Moreover, we found that the 1-SVM
methodology is more easy to implement and tune, while
having a reasonable training cost. The application ad-

dressed here concerns sound classification. In real environ-
ment, there might be many sounds which do not belong to
one of the pre-defined classes, thus it is necessary to define
a rejection class, which may gather all sounds which do not
belong to the training classes. An easy and elegant way to
do so consists of estimating the regions of high probability
of the known classes in the space of features, and consid-
ering the rest of the space as the rejection class. Training
several 1-SVMs does this automatically.

As many others, the 1-SVM approach is dependent on
a set of user-tuned parameters which have a regularization
effect during training. Also, since these parameters are not
learnt, they may be chosen inadequatly and lead to poor per-
formance on a given data set. Thus, a systematic methodol-
ogy that allows for parameter optimization is quite useful.
Our investigations will show that one effective method for
improving 1-SVMs consists of well selecting the 1-SVM
kernel function, and thus improving sound class prediction.

In the literature, several attempts have been made to im-
prove class-prediction accuracy of SVMs [3, 19, 16, 29].
In [1, 2], a conformal transformation method was proposed
to change the kernel function. Another method is proposed
in [15] which is based on the kernel-alignment idea but
with a simple transformation of the ideal target kernel, to
adapt the kernel in the imbalanced training-data problem.
Compared to [15], our method deals with the entire train-
ing dataset and not just the class-boundary data. Moreover,
this solution modify the kernel function instead of the ker-
nel matrix as in [15].

In this paper, we assume that the kernel function is a Ra-
dial Basis (RBF) function and we follow [8] to deal with
the optimalσ which is the tradeoff between the over-fitting
loss in dense areas and the under-fitting loss in sparse areas,
by scaling the kernel width in a distribution-dependent way.
In addition, we will introduce an advanced decision func-
tion formulation allowing for a sophisticated dissimilarity
measure.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of the 1-SVM-based sound classi-
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fier: 1-SVM theory and derivation of an advanced dissimi-
larity measure. Section 3 discusses the kernel scaling width
method. Experimental set-up and results are provided in
Section 4. Section 5 concludes the paper with a summary.

2 One-class SVM classifier

The 1-SVM approach1 [27] has been successfully applied to
various learning problems [9, 20, 6, 28, 13]. It consists of
learning the minimum volume contour that encloses most
of the data in a dataset. Its original application is outlier
detection, to detect data that differ from most of the data
within a dataset.

More precisely, letX = {x1, . . . , xm} a dataset inRd.
Here, eachxj is the full feature vector of a signal, i.e., each
signal is represented by one vectorxj in R

d. The aim of
1-SVMs is to use the training data so as to learn a function
fX : R

d 7→ R such that most of the data inX belong to the
setRX = {x ∈ R

d with fX (x) ≥ 0} while the volume of
RX is minimal. This problem is termedminimum volume
set (MVS) estimation, see [11], and we see that membership
of x toRX indicates whether this datum is overall similar to
X , or not. Thus, by learning regionsRXi

for each class of
sound(i = 1, . . . , N), we learnN membership functions
fXi

. Given thefXi
’s, the assignment of a datumx to a class

is performed as detailed in Section 2.1.
1-SVMs solve MVS estimation in the following way.

First, a so-calledkernel functionk(·, ·) ; R
d × R

d 7→ R is
selected, and it is assumedpositive definite, see [27]. Here,
we assume a Gaussian RBF kernel such thatk(x, x′) =
exp

[
− ‖x − x′‖2/2σ2

]
, where‖ · ‖ denotes the Euclid-

ean norm inR
d. This kernel induces a so-calledfeature

spacedenotedH via the mappingφ : R
d 7→ H defined

by φ(x) , k(x, ·), whereH is shown to be reproducing
kernel Hilbert space (RKHS) of functions, with dot prod-
uct denoted〈·, ·〉H. The reproducing kernel property im-
plies that〈φ(x), φ(x′)〉H = 〈k(x, ·), k(x′, ·)〉H = k(x, x′)
which makes the evaluation ofk(x, x′) a linear operation
in H, whereas it is a nonlinear operation inRd. In the
case of the Gaussian RBF kernel, we see that‖φ(x)‖2

H ,

〈φ(x), φ(x)〉H = k(x, x) = 1, thus all the mapped data
are located on the hypersphere with radius one, centered
onto the origin ofH denotedS(o,R=1), see Fig 1. The 1-
SVM approach proceeds inH by determining the hyper-
planeW that separates most of the data from the hyper-
sphere origin, while being as far as possible from it. Since
in H, the image byφ of RX is included in the segment of
hypersphere bounded byW, this indeed implements MVS
estimation [11]. In practice, letW = {h(·) ∈ H with

1Various terms have been used in the literature to refer to one-class
learning approaches. The term single-class classification originates from
Moya [21], but also outlier detection [25], novelty detection [10, 4] or
concept learning [14] are used.

〈h(·), w(·)〉H − ρ = 0} , then its parametersw(·) andρ
results from the optimization problem

min
w,ξ,ρ

1

2
‖w(·)‖2

H +
1

νm

m∑

j=1

ξj − ρ (1)

subject to (fori = 1, . . . , m)

〈w(·), k(xj , ·)〉H ≥ ρ − ξj , andξj ≥ 0 (2)

whereν tunes the fraction of data that are allowed to be on
the wrong side ofW (these are the outliers and they do not
belong toRX ) andξj ’s are so-called slack variables. It can
be shown [27] that a solution of (1)-(2) is such that

w(·) =
m∑

j=1

αjk(xj , ·) (3)

where theαj ’s verify the dual optimization problem

min
α

1

2

m∑

j,j′=1

αjαj′k(xj , xj′) (4)

subject to0 ≤ αj ≤ 1
νm

,
∑

j αj = 1. Finally, the de-
cision function isfX (x) =

∑m

j=1 αjk(xj , x) − ρ andρ is
computed by using thatfX (xj) = 0 for thosexj ’s in X that
are located onto the boundary, i.e., those that verify both
αj 6= 0 andαj 6= 1/νm. An important remark is that the
solution is sparse, i.e., most of theαi’s are zero (they corre-
spond to thexj ’s which are inside the regionRX , and they
verify fX (x) > 0).

As plotted in Fig. 1, the MVS inH may also be es-
timated by finding the minimum volume hypersphere that
encloses most of the data (Support Vector Data Description
(SVDD) [28]), but this approach is equivalent to the hyper-
plane one in the case of a RBF kernel.

In order to adjust the kernel for optimal results, the pa-
rameterσ can be tuned to control the amount of smoothing,
i.e. large values ofσ lead to flat decision boundaries, as
shown in Fig. 2. Also,ν is an upper bound on the fraction
of outliers in the dataset [27]. Fig. 2 displays an example
of a 2-dimensional data to which a 1-SVM using an RBF
kernel was applied for different values ofν andσ.

2.1 A dissimilarity measure

The 1-SVM described above can be used to learn the MVS
of a dataset of feature vectors which relate to sounds. This
is not yet a multiclass classifier, and we now describe how
to build such a classifier, by adapting the results of [9, 12].

Assume thatN 1-SVMs have been learnt from the
datasets{X1, . . . ,XN}, and consider one of them, with as-
sociated set of coefficients denoted ({αj}j=1,...,m, ρ). In



Figure 2: A Single-class SVM using an RBF kernel is applied to 2-dimensional data; the parameterν characterizes the
fractions of SVs (Support Vectors) andoutliers(points which are on the wrong side of the hyperplane). The parameterσ
characterizes the kernel width. For these plots, the parameters are (a)ν = 0.1, σ = 1 (b) ν = 0.3, σ = 1 (c) ν = 0.3, σ = 4.

Figure 1: In the feature spaceH, the training data are
mapped on a hypersphereS(o,R=1). The 1-SVM algo-
rithm defines a hyperplane with equationW = {h ∈
H s.t. 〈w, h〉H − ρ = 0}, orthogonal tow. Black dots rep-
resent the set of mapped data, that is,k(xj , ·), i = 1, ..., m.
For RBF kernels, which depend only onx − x′, k(x, x′) is
constant, and the mapped data points thus lie on a hyper-
sphere. In this case, finding the smallest sphere enclosing
the data is equivalent to maximizing the margin of separa-
tion from the origin.

order to determine whether a new datumx is similar to the
setX , we define a dissimilarity measure, denotedd(X , x)
as follows

d(X , x) = − log[
m∑

j=1

αj k(x, xj)] + log[ρ] (5)

in whichρ is seen as a scaling parameter which balances the
αj ’s. Thanks to this normalization, the comparison of such

dissimilarity measuresd(Xi, x) and d(Xi′ , x) is possible.
Indeed,

d(X , x) = − log
[ 〈w(·), k(x, ·)〉H

ρ

]
(6)

because‖k(x, ·)‖H = 1, wherew(·)∠k(x, ·) denotes the
angle betweenw(·) andk(x, ·). By doing elementary geom-
etry inH, we can show that ρ

‖w(·)‖H
= cos(θ̂), see Fig.1.

This yields the following interpretation ofd(X , x)

d(X , x) = − log
[cos

(
w(·)∠k(x, ·)

)

cos(θ̂)

]
(7)

which shows that the normalization is sound, and makes
d(X , x) a valid tool to examine the membership ofx to a
given class represented by a training setX .

2.2 Multiple sound classes 1-SVM-based
classification Algorithm

The sound classification algorithm comprises three main
steps. Step one is that of training data preparation, and it
includes the selection of a set of features (MFCCs in ex-
periments) which are computed for all the training data on
sliding windows. Thus, each sound is converted into a time
series of such features, which are then averaged over the
signal. The resulting feature vectors2 are centered and nor-
malized to unit variances. The value ofν is selected in the
reduced interval[0.05, 0.8] in order to avoid edge effects for
small or large values ofν.

2We emphasize the use offeature is confusing and that the features
vectors are different from data in feature space, the former being finite
dimensional vectors and the latter being functions. However, the word
being used in both audio signal processing and VMs, we stick to these two
uses.



Algorithm 1: Sound classification algorithm

Step 1: Data preparation

• Form the training sets Xi = {xi,1, ..., xi,mi
}, i =

1, . . . , N by computing the feature vectors for all the
training sounds selected.

• Set the parameter σ of the Gaussian RBF kernel to
some pre-determined value (e.g., set σ as half the av-
erage euclidean distance between any two points xi,j

and xi′,j′ , see [26]), and select ν ∈ [0.05, 0.8].

Step 2: Training step

• For i = 1, . . . , N , solve the 1-SVM problem for the
set Xi, resulting in a set of coefficients (αi,j , ρj), j =
1, . . . , mi

Step 3: Testing step

• For each sound s to be classified into one of the N
classes, do

– compute its feature vector, denoted x,

– for i = 1, . . . , N , compute d(Xi, x) by using
Eq. (5)

– assign the sound s to the class î such that î =
arg mini=1,...,N d(Xi, x)

3. Scaling the kernel width
We assume here that the Gaussian RBF kernel is used. This
provides a powerful learner, however it is sensitive to the
choice of the scale (or width) parameterσ. This parameter
controls the trade-off between faithfulness to the training
data and smoothness of the decision surface in the space of
the data. Whenσ is too small the SVM overfits the training
data. Ifσ is too large then the decision boundary is not able
to model the required decision boundary. In most cases,
when using a Gaussian kernel the scale parameterσ must
be specified in advance.

In a given classification task, picking the best kernel pa-
rameters is actually a non trivial model selection problem.
It may be solved by either an exhaustive search over all pa-
rameter values or an optimization procedure that explores
only a finite subset of the possible values. Generally, the
parameters are selected empirically by trying a finite num-
ber of values and keeping those that minimize the classifi-
cation error estimated over a validation set. This procedure
requires, e.g., a grid search over the parameter space and
needs to locate the interval of feasible solution. The overall
process of building many models and choosing the best one
may be time-consuming.

In this section, we explore an information-geometrical
structure induced in the input space by the kernel. [23, 7,
17, 5] discuss the selection ofσ for a Gaussian RBF kernel

so as to avoid the problem of over-fitting and under-fitting
in SVM learning. In the 1-SVM classification task with
Gaussian RBF kernel, the kernel width must be adapted by
a scaling process, in some way, to the distribution of the
data inH and to adapt the width to the data spread area in
H: in areas with dense data distribution, the width should
be small, and in sparse areas the width should be large.

By studying density vs. sparsity inH [8] argues that if
a patternx is in a dense area its neighbors are close to it,
and conversly in sparse area. Thus, by considering thex’s
k-NNs (k-nearest neighbors), we get an indexβ of density
of x’s neighborhood. This index is

β(x) = (1/k)
∑

i

k(x, xi), xi ∈ x’s k-NNs (8)

A largeβ means a dense area wherex lies and vice versa,
since inH, the expression of the Euclidean distance of pat-
ternsx andy given byd2 = 〈φ(x)− φ(y), φ(x)− φ(y)〉 =
‖φ(x) − φ(y)‖2 = ‖φ(x)‖2 + ‖φ(y)‖2 − 2〈φ(x), φ(y)〉 =
2(1 − k(x, y)) shows that the value ofk(x, y) is inverse to
d.

Selecting thex’s k-NNs means that we are selecting the
k patterns which have a distanced less than those of the
remaining part in the training set, and this means that they
have the highest kernel valuek(x, .). In the following, the
Gaussian RBF kernel is formulated ask(x, y) = exp

[
−

λ(x, y)‖x−y‖2/2σ2
]
, [8]. Each patternx has an individual

valueλ̃(x). If β(x) is large, i.e. in dense area, a largeλ̃(x)
will increaseλ(x, y) which means decreasing the widthσ.
Conversely, a smallβ(x) means that a small̃λ(x) is used.
Thus, the modified Gaussian RBF kernel is formulated as

k(x, y) = exp(−λ̃(x) · λ̃(y) · λ‖x − y‖2/2σ2) (9)

In this way,λ(x, y) fluctuates within a very small range
around 1 to reduce distorting the metric induced by the RBF
kernel.

In order to formulate the modified Gaussian RBF kernel
as indicated in Eq. (9), we need first to computeλ̃(·).

Algorithm 2: Scaling Kernel width

For each training set Xi, i = 1, . . . , N , do:

• For each training pattern xi,j ∈ Xi, j = 1, . . . , mi, the
following steps are needed:

– Find its k-NNs in Xi, and compute β(xi,j), ac-
cording to Eq. (8)

– Compute the mean of β(xi,j)

β̆ = (1/mi)
∑

i

β(xi,j) (10)

– Compute λ̃(xi,j) by

λ̃(xi,j) = 1 + δ(β(xi,j) − β̆) (11)

where δ ∈ [0, 1] is a factor for weighting intensity.



• For each testing pattern zi ∈ X ′, i = 1, . . . , m′

– Find its k-NNs in X , and compute β(zi), accord-
ing to Eq. (8)

– Compute β̆ using Eq. (10).

– Compute λ̃(zi), using Eq. (11).

For each pair (x,y), the modified Gaussian RBF kernel is
formulated according to Eq. (9).

An important remark is that the dissimilarity in Eq. (7) is
not properly defined anymore. However, if we understand
the roleλ(x, y) as locally stretching the hypersphere surface
in H, the relative positions of the data inH is not deeply
modified, and the interpretation ofd(X , x) remains valid.

4. Experimental evaluation
For experimental evaluation, considering several sound li-
braries was necessary for building a representative, large,
and sufficiently diversified database. The major part of
the sound samples used in the recognition experiments was
taken from different sound libraries [18, 24]. Some partic-
ular classes of sounds have been built or completed with
sounds recorded by us. The selected sounds are impulsive
and they are typical of surveillance applications. More pre-
cisely, the database consists of above 1,000 sounds belong-
ing to 9 classes (Human screams, Gunshots, Glass breaks,
Explosions, Door slams, Dog barks, Phone rings, ..., etc) as
described in the following Table 1.

Table 1: Classes of sounds and number of samples in the
database used for performance evaluation.

Classes Train Test Total

Human screams 48 25 73
Gunshots 150 75 225

Glass breaks 58 30 88
Explosions 41 21 62
Door slams 209 105 314
Dog barks 36 19 55

Phone rings 34 17 51
Children voices 58 29 87

Machines 40 20 60

Total 674 341 1015

All signals in the database have a 16 bits resolution and
are sampled at 44100 Hz. A feature vector (of dimen-
sion 12) issued from Mel Frequency Cepstral Coefficients
(MFCCs) is computed for each entire sample file. The
analysis window length for all features was 25 ms and the
used windowing function was Hamming. The overlap be-
tween successive frames was 50% of the frame length.

The objective of this experimental study is to evaluate the
quality of the approache described above. The sound recog-
nition ability of the our method is evaluated by supervised
classification using a 1-SVM-based classifier as described
in Algorithm 1 in which theν value is fixed to0.2. Results
for Algorithm 2 are displayed in Table 2. The weighting
intensity factorδ is set to 0.5 in all experiments.

The results listed in Table 2 show that the performance
with scaled width kernel is better than that with fixed width
kernel and thus confirms that the pattern spatial distribution
affects the sound recognition quality.

5. Conclusions
In this paper, we propose a system motivated by a practical
surveillance application that uses a discriminative method
based on one-class SVMs, together with a sophisticated dis-
similarity measure. In order to enhance the discrimination
ability of the proposed system, the kernel parameters are
also studied. The under-fitting and over-fitting phenomenon
is tackled by taking into account the patterns’ spatial distri-
bution.
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