Support Vector Driven Markov Random Fields towards DTI Segmentation of the Human Skeletal Muscle

Abstract : In this paper we propose a classification-based method towards the segmentation of diffusion tensor images. We use Support Vector Machines to classify diffusion tensors and we extend linear classification to the non linear case. To this end, we discuss and evaluate three different classes of kernels on the space of symmetric definite positive matrices that are well suited for the classification of tensor data. We impose spatial constraints by means of a Markov random field model that takes into account the result of SVM classification. Experimental results are provided for diffusion tensor images of human skeletal muscles. They demonstrate the potential of our method in discriminating the different muscle groups.
Type de document :
Communication dans un congrès
ISBI International Symposium on Biomedical Imaging, May 2008, Paris, France. pp. 923-926, 2008, 〈10.1109/ISBI.2008.4541148〉
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal-supelec.archives-ouvertes.fr/hal-00267032
Contributeur : Karine El Rassi <>
Soumis le : jeudi 27 mars 2008 - 11:03:22
Dernière modification le : vendredi 15 février 2019 - 13:58:08
Document(s) archivé(s) le : vendredi 21 mai 2010 - 00:53:38

Fichier

ISBI08.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Radhouène Neji, Gilles Fleury, J.-F. Deux, A. Rahmouni, G. Bassez, et al.. Support Vector Driven Markov Random Fields towards DTI Segmentation of the Human Skeletal Muscle. ISBI International Symposium on Biomedical Imaging, May 2008, Paris, France. pp. 923-926, 2008, 〈10.1109/ISBI.2008.4541148〉. 〈hal-00267032〉

Partager

Métriques

Consultations de la notice

593

Téléchargements de fichiers

237