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Black-box identification and simulation of
continuous-time nonlinear systems with
random processes

Sylvain Vinet and Emmanuel Vazquez

Supélec, 91192 Gif-sur-Yvette, France

Abstract This paper proposes a methodology for black-bemtification and simulation of continuous-

time nonlinear dynamical systems based on random procedslimg and kriging. It is assumed that

the (finite-dimensional) state vector is observed with @@t regularly or irregularly spaced instants.
The proposed identification method consists of two steps. firkt step is the estimation of the time

derivatives of the state vector. The second step considteiapproximation of the controlled vector

field. For the simulation of the system, a new integratioresed is proposed. This integration scheme
makes it possible to deal consistently with the error of agjpnation of the vector field.

Keywords: Nonlinear system identification; Continuousdigystem; Nonparametric methods

1. INTRODUCTION Hartley modulating functions (see, e.g., Rao and Unbehauen
2006), etc. To the best of our knowledgmnparametricap-
This paper proposes a random process approach for blagkoaches have not been addressed yet. In this paper, we pro-
box identification and simulation of continuous-time naglr Pose a nonparametric approach to approxinfab@ased on a
dynamical systems defined by an ordinary differential équat framework ofrandom processeandKriging. The identification
Let us consider an ODE procedure can be parted into two steps. Sificeaps the state
% = £(x, ) @ to it_s d_erivative, the first step of the procedure_ is to edtintiae
] 4 T derivative of the state from the set of observations. In géo®ad
with x € R (the state of the systemy, € R? (the control gtep an approximation dfis built based on the observations
input), andf : R? x R? — R? aC" nonlinear map (the vector and the estimated derivatives. As mentioned above, a random
field). Assume thaf is unknown and thak is observed at a process (rp) framework is used: a first rp, indexed dg used
finite number of instants; < --- < ,. Afirst objective of this {5 model the state of the system as a function of time and a
paper is to estimate from x(¢,), ..., x(t,). A second task is gecond rp, indexed by andu, models the unknown function
to simulate the future trajectory of the system, i.e. to mgtle ¢ ysing random processes makes it possible to deal comfort-
state of the system at any instant- ¢,,, given{u(s);s <t}  aply and consistently with the errors of estimation inval
and the set of observations. each step. Moreover, this framework yields a natural method

A classical approach for black-box identification of contius ~ Of simulation of the system after the estimationfdias been
dynamical systems is to usielay embeddingViore precisely, Ccarried out.

assume regularly sampled observations, and denoté'liie  This paper is organized as follows. Section 2 recalls funda-

vector (xg—r,...,xx), With x; := x(t;), and byu" the mental notions on the theory of linear prediction of random

vector(u—r, ..., ux), with u; := u(t;). Then, the nonlinear nprocesses. Section 3 presents our two-step identification p

system (1) may be approximated by a recurrence equatigBgure. Section 4 deals with the simulation of the estimated

written as , system. Finally, Section 5 provides an example based on the
xp = g(x" L uth), (2)  Lotka-Volterra non-linear system.

where the functiog can be of two different type®arametric
modelingrefers to the case wheggis a parametric function, 2 LINEAR PREDICTION OF A RANDOM PROCESS
with a relatively small number of parameters (see, e.g.téNal
and Pronzato, 1997Mlonparametric modelingenerally means
thatg belongs to a space of infinite dimension, typically a spa

o Spines o more general s eprodcnokerel DS o om geosatstcs (se. e . Chiksand Do
they are used in this paper to build approximations of noadr
In many cases though, it would be useful to preserve tHanctions. Kriging and intrinsic kriging are primarily sigtical
continuous-time representation of the system, i.e. toredf = methods but they can also be understood from the point of view
directly from the observations. A number of parametric apef reproducing kernel Hilbert space methods (see, e.g.,bé/ah
proaches have already been proposed: state-dependemi-parE990). Let us consider a functian: T — R, whereT is a set
eter estimation (Young et al., 2003), estimation based 6n diof parametersT C R<, for instance). We wish to approximate
ferential algebra techniques (Fliess et al., 2006), thénotedbf = based on a finite set of observation(s;), i € {1,...,n}.

clé] this section, we shall recall some main results alkoiging
andintrinsic kriging (Matheron, 1973). These methods origi-



A classical idea is to moded(t) by a second-order rp. An paper, we shall consider polynomial mean functions only, so
approximation of: is then obtained by considering theerage that{ can be written as

of all sample paths of the rp that interpolate the obseruaatio m

The theory of kriging and intrinsic kriging is concerned hwit £(t) = Zaipi(t) +n(t), (3)

the computation of this approximation based on the second- P

order moments of the rp. Kriging and intrinsic kriging areal
known as thebest linear unbiased predicto(8LUP). More
specifically, kriging is used when the meanfoit assumed to
be known, and intrinsic kriging is used otherwise.

wheren(t) is a zero-mean rp, and where ths form a basis of
low-degreel-variate polynomials. LeP be them-dimensional
vector space spanned by the functigps};—1 ... ., and™H,, be

the Hilbert space generated Iy Whenm(t) is known, the

Let (22, A4,P) be a probability space, and denote py Q2 x  framework of the previous section can be used by considering
T — R asecond-order rp, i.e. a set of random variables indexédt) — m(t). The difficulty to extend linear prediction (kriging)
by elements ofT. Thus, for allt € T, £(t) = £(-,t) is an  whenm(t) is unknown is that the spaces, andP are of dif-
element of L2(Q2, A, P). Let m(t) := E[£(¢)] be the mean of ferent nature, and therefore, itis difficult to find a natwedlar
&(t) (the average of(¢) on all sample paths) and denote byproduct in the space generated §yto apply the orthogonal
k(t,s) := Cov(&(t),£(s)), t,s € T, its covariance function. projection theorem again.

It is assumed that is a sample path of and thus, each To circumvent this difficulty and to deal comfortably witmra
observationz(¢;) corresponds to a particular outcome of the

random variabl&(t;). Although we do not need to assumedom processes that possess an unknown mea Matheron
o v : (1973) introduces a notion afeneralized random processes

specifically the Gaussianity gfthroughout this paper, note that "~ N

sample paths of Gaussian random processes can already deffRieh extends that of random processes. Lete the vector

a very large class of functions when the covariance functigpPace Of all finite-support measures, the space of linear com-

and the mean vary (see e.g. Theorem 4 of Ghosal and R pations}_;_, Aid;,, whered; stands for the Dirac measure,

(2006)). Many properties of the sample paths follow from th&uch that for anyB c T, 4,(B) equals one ift < B and

characteristics of the covariance, especially in the Ganss Zero otherwise. Lef\. be the subset of the elements bf

case. In particular, it is essential to chodseonsistently with that vanish orP. Thus,\ € Ap. implies

the regularity, the differentiability, the spectral projes, etc. n

of z. For the sake of brevity, we shall not talk about this (A, z) = Z&Z(m =0, VzeP.

issue, which is discussed extensively in the statistitaidiure. i—1

In practice, the covariance is chosen under the form of a

parameterized function, the parameters of which are adaptBemark Ap. can be viewed as a set of finite-difference

to the observations using a goodness-of-fit criterion, sah (increment) operators. For example, the condition for=

maximum likelihoodStein, 1999). >, Aide, to be orthogonal to constant functions can be ex-
pressed a§_" ; \; = 0. Thus,A = >°7" | Xi(6y, — 8¢, ), SOA
2.1 Kriging is a linear combination of increment measuwgs— d;, .

) If £(t), t € T, is a second-order rp with mean(t) in P and
Zero-mean random processes play an important role beca ariancek(t, s), the linear map

their covariance function then correspond to a scalar miodu

Indeed, ifvt € T, m(t) = 0, thenVt,s € T, (£(¢),&(s))2 = E:A — H =span{{(t) ;t € T}
E[¢(t)&(s)] = k(t,s). Let H denote the Hilbert space gen- n n

erated by a zero-mean processi.e. the completion of the A= Z Ail, — &) = Z Ai&(ts),
vector space whose elements are finite linear combinatibns o i=1 i=1

random variable§(¢), t € T, endowed with the scalar prOdUCtextendi(t) onA. (\ )z i= (€N, €()) defines an inner

(g(t)ag(s))l? = k(tvs) I . = ..

) ) product onA. Let A be the completion ofA under this inner
Let & be a random variable ift{. Assume that we observe product and extenél(\) on A by continuity. Ageneralized rp
a finite set of random variables € 74, i = 1,...,n. The s then obtained. Note that for all€ A, E[¢(\)] = (A, m(")),
kriging predictorof go_from &, 6 corresponds.to tﬁé. © andforallh =Y, \ié,, € Aandy = Z_j 105, € A,
norm closest approximation df, by a random variablg, in
Hs = span{{y,...,&,}. The orthogonal projection theorem k(A ) :== Cov[§(N), &(p)] = ZAiujk(ti, sj). (4
states that thé.2-norm E[(¢, — &0)?] (the mean square error i
between the random variable and its predictor) is minimifed () ;) can be extended oh by continuity of the covariance
§o is the orthogonal projection @f, ontos. For the moment, gperator. Denote also by, the completion of\ . under the
we shall omit details since we will be more specific in thgnner product(-,-). SinceA € Ap. filters out any function

following section. of P and the mean of(t) is in P, YA € Ap., £()) is a
zero-mean random variable. Remark also thaty € Ap.,
2.2 Intrinsic kriging k(A ) = (A 1)a-
We can now recall the main result of IK. Létbe a rp with

In this paper, we usatrinsic Kriging (IK) to obtain a linear
predictor when the mean ¢ft) is unknown. We recall here the
main results (Matheron, 1973).

meanm(t) € P and covariance(t,s). Let &,&1,...,&n

be random variables it = span{{(t) ; ¢t € T}. For all

i € {0,1,...,n}, there exists an element € A such that
Any rp £ can always be rewritten as the sum of a zero-meafy = £(\;). Assumen observations be sample values of the
process and a deterministic function (the mearf)ofin this random variableg?™ = ¢ +¢;, i = 1,...,n, where the



¢;S are zero-mean random variables independeg{®f with A generalized rp{&()\) ; A € A} is said to bemean-square
covariance matri¥.. differentiableat A € A if £(\,) converges in mean square
ash — 0. When the limit exists, it is denoted k§()\). If
'0%k(u, s) /Ouds exists att, t) for all t € R, then¢(\) is mean-
square differentiable for al (see Vazquez and Walter, 2005b).

& = Zaoyi&)bs _ S(AAo) i Z ag.i65 <)\AO _ Zao,i)\i) Remark that if{()) exists, there also exists € A such that
i=1 =1 i=1

Theintrinsic kriging predictorof £, based on the observations
is the linear projection

& §(A) = &(N).
5 o .
of & onto Hs = span{e?™,i = 1,...,n}, such that the D(?glvitwe? of orderr{:lre d(re]nor;[ed (tgz(ﬂ()\). Der}%te also by
variance of the prediction err@p — &, is minimized under the A the ee(m)ents of such t "“(E?) _()‘) - §(AT). Given
constraint A=, 6" andp = Zj pids,”’ in A, it is easy to check
n that
Ao— Ao = Ao — ao,i)\i S APL. (6) - 0%itT;
; Cov[¢(N), &(w)] =D _(=1)7A k(ti,s;) .

Z/’L] qi ’l“]‘
. . — ot} asj
The coefficientsyy;, ¢ = 1,...,n, are solutions of a system hJ

of linear equations (Matheron, 1973), which can be written i

matrix form as

K+K. PT ao ko Example In this paragrap_h, we intentto_ gi\{e a practical exam-
( 5 e o > <u0> — (po) , (7) ple. Consider the estimation of the derivative of a function
[0,1] — R from noisy observations of this function at a number
whereK is then x n matrix with entriesk(\;, A\;), 4,5 =  of irregularly spaced pointg € [0,1],7 = 1,...,n. Assume
L,...,n, P isam x n matrix with entries(\;, p;) for j = > is a sample path of a rg with constant mean (therefore,
I,...,nandi = 1,...,m, uo is a vector of Lagrange coeffi- P = span{1}) and stationary covarianégt, s) = k(t — s).
cients kg is a vector of sizex with entriesk(\;, \g) andpo iSs  The noisy observations efare supposed to be sample values of
a vector of sizen with entries(A\o, p;), i = 1,...,m. the random variable&§®® = ¢(t;) +¢;,i = 1,...,n, where the

The variance of the prediction error, which accounts for th
uncerta|/n\t2y of the predlctlon, 's given by compute the IK predictor of (¢) for all ¢ € [0, 1]. Thus, for
o0+ = Varl§o — &l all t, we search for a linear combinatigty) = S a; ;60>

_ ol T T 8 , ,
k(30; do) 2‘_%;0 ko + io (K+Kao (&) oy thatvar[£(t) — £(t)] is minimized under the constraint
= k(Xo, M) —agko — Po 1o -

%s are i.i.d. zero-mean Gaussian random variables that model
e noise of observation. To estimate the derivative:,ofve

This variance, also called theiging variance makes it pos- 6y — Z a0, € ApL & Z az; =0. (12)
sible to assert confidence intervals for the_ predictor. & th i=1 i=1
following paragraphs, we shall use the notations The solution can be obtained using (7), which reads
{’C(go | gi)bs7'.'7§$lbs) = a0T7 N (9) 1
V(o | &, ..., &%) = Varlg — &) - K+oL, : | (a K
o =(v). @
1 ot 0
2.3 Prediction of derivatives 1.--1 0

whereI,, denotes the identity matrix ankl, corresponds to
3he vector with elementg!(t — ¢;). More examples (with
illustrations) can be found in Vazquez and Walter (2005b).

In this section, we recall how to use IK to estimate the deriv
tives of a rp from point-wise observations (Vazquez and #valt
2005b). To simplify, supposg& = R. Recall that a zero-mean

second-order rg(t) with covariance functiort(¢, s) is mean-
square differentiable atif 3. TWO-STEP IDENTIFICATION PROCEDURE

En(t) = %(é(t +h)—£(1)) (10) In this section, we present a procedure for black-box idienti
. o cation of a continuous-time nonlinear dynamical systermfeo
CO”V‘?rg‘;S In‘mean square whier- 0. The I'm't exists if and finite number of (possibly noisy) observations of the stae-v
only if 0°k(u, s)/0uds exists at(t, 1). If £(t) is mean-square 4, principle, the proposed procedure could also beiagjf
differentiable for allt, the I|'m|t process is called thderivative the state vector were only partially observed, provided iz
processand is denoted by. Higher-order derivatives are ob- non_opserved components can be recovered from the observed
tained by iteration and are denotedd. It is straightforward components through linear operations (such as differémtia
to check that N or integration, for instance). Indeed, the framework ofjkrg
, o makes it possible to predict the result of any linear operato
Cov[e™(2), €7 (s)] = Stapar (E5)- (11)  acting on% rp. For thg sake of brevity, we sh);II not degl with
) ] o ) partially observed state vectors in this paper. Besideaydid
We now deal with the differentiability of generalized ramto opfyscation of notations, the presentation will be fursiepli-
processes. Let, : A — A be the translation operator such thatig by supposing the state vector has dimension dne ().
for A =%, Xids, € A, 7oA = >, Xidt,1n- Then, define The generalization to higher dimensions is straightfodiass
will be seen in the example of Section 5). As mentioned in the
Ap = E(ThA - A). introduction, the procedure consists of two steps. Theativfe




of the first step is to estimate the derivativerofin the second The notationKr indicates that the covariandg- is used to
step, an approximatiofi of f is computed. compute the kriging coefficients.

In the strong noise case, the positioning error of the olasienv

of F' has to be taken in account. The observation model can
now be written ag"*" := F(x(t;) + Vi, u(t;)) + Wi, with V;

the observation noise. Of course, the covariance betwién
andF (2, u’) is notkp{ (z(t;), u(t;)), (z’,u’) }. However, the
correct covariance can be derived quite easily and a linear
predictor similar to (16) can be obtained again. In theditere

of kriging, the modification of the covariance function due
to some positioning uncertainty is a classical issue (seg, e
Chiles and Delfiner, 1999, p. 74-80). Although of practical
importance, the case of strong noise we will not be developed
in this paper due to the lack of space.

3.1 Estimation of the derivative of the state

Let {z9", i = 1...n} be a set of noisy observations of
the state at the instants, which may not be evenly spaced.
Our objective is to approximate(t), t € R, from the noisy
observations. Consider a mean-square differentiabl& rgg
R, indexed byR, with constant but unknown mean, and
(at least) twice-differentiable covariance functibgn. Assume
moreover thatc is a sample path ok, and that the noise is
modeled by i.i.d. random variablés, i = 1, ..., n, with zero-
mean and known varianeg,. Thus, for alli, 2¢"* is a sample
value of the random variable

X = X (t;) + Vi (14) After the second step of the identification procedure, an ap-
proximation f of f is obtained. One can then use a standard
Using the results of Section 2.3, the derivative wmofat ¢;, N

: 4 : ' ODE solver to simulate the approximate system= f(x, u).
i = 1...n, can be estimated by computing the IK predictofqyever, we believe that the error of approximatiorf should

X(t;) of X(t;) based onX®, j = 1,...,n. Then, for all be taken into account during the simulation. In the nextisect
i=1, ..., n,&(t;) may be estimated by we propose an integration method that uses the rp point of vie
~ . resented above.
B(ti) = Ko (X (£)X%) x°b | @) P
with 4. SIMULATION
X = (x¢b, ., X9")T and
xS = (x9Ps )L 20T In this section, we propose a numerical integration metHod o

The notationK y indicates that the covariande is used to the ODE (1) based on linear prediction of the state vector.
compute the kriging coefficients. The estimation error has As in Section 3, we shall assume that= 1 to simplify the

variance given by (X (t;)]X°b). presentation. Again, the extensionda> 1 is straightforward,
since each dimension can be considered separately. Incessen
3.2 System approximation the proposed integration scheme is a multi-step integratio

method, such as for instance the fixed-step Adams method (see
e.g., Butcher, 2003). A multi-step predictor of the statey ina

The next step of the identification procedure is to approtgma®-*
written as

the functionf : R — R using the estimated derivatives (15). » .
(Remember that we assuméd= 1. If d > 1, each compo- _ o . ‘ .

nentf;, i = 1,...,d, of the vector-valued functiofi should ~ **+! = Z ®iTn—; + Zﬁjf(xn—]a u((n—j)h)), n=0,
be approximated separately, cf Section 5.) Suppose jttiat =0 g=0 (17)

a sample path of a rp denoted W&y, indexed byz and u, . . . . 4

, . whereh is the integration step size ang denotes the predic-
with mea/rml(:c, w andqcovananc.eF{(af, w), ("T./’ u')}, where tion of z(nh) given the initial conditionsy := z(0),z_; =
(l’aut); (z',u )ke RxR -ASE m?nuonled mdSectlon 2.|21(:c,1_1)| _a(—h),z_y := x(—2h),... In classical integration methods,
can be an unknown constant or a Iow-degree polynomial In y,o cqefficientsy; andg; are obtained by minimizing the pre-
andu, which makes it possible to incorporate prior knowledgeji +ion error under a polynomial approximation ef In the

on f (for instance, one can specify that has a linear trer]d proposed simulation method, the coefficients are obtairsed a
alonga oru (Vazquez and Walter, 2005a)). For the approximag, o eq it of the best linear prediction of thexp
tion of f, two cases are to be considered depending on whether

or not the observation noise is assumed low or strong. First, assume thatf is known exactly. To predictr,,4+1

o . from .oy Zn—g,» ¢ > 0, consider the IK linear predictor
When the noise is low, we assume that the observation eher (t Tnoee oo 4= P

difference betweem°® andz(t;)) can be neglected. Then, for X (7 + 1)h) of X((n + 1)h) based onX (nh) and X ((n —

all 4, the estimated derivative (15) can be viewed as a sampl¢h). - - ., X (nh). Then, a one-step ahead prediction of the state
value of F' at (2%, u(t;)) ~ (z(t;),u(t;)). The estimation can be written as

error of the derivative of the state is taken into account by , .. —jcy (X((n+1)h) |

introducing an independent Gaussian random varighlgvith . . 4

zero-mean and variance equal)g (X (¢;)|X°P%). Thus, for X(nh), X((n = )h),..., X(nh)) x;,, (18)

all 4, define the random variable®s := F(z%> u(t;)) + W;i.  with x¥, := (2, #p—q, ..., &) " and, for alli,

For allz andu, the IK predictorF'(z,u) of F(x,u) based on &; = f(x;,u(ih)). (19)

the random variableB°™, i = 1,...,n, can be used to obtain ] . ]
~ obey = with p = 1 (see Figure 1). Whep = 1, the stability of the
fla,u) = Kp(F(z,u) [ F) x (16) integration scheme (17) is ensuredif < 1 (Butcher, 2003).

with Due to the unbiasedness condition (6), we have in fact here
Fo*s = (Fp™, ..., F™)T  and a = 1. This explains our choice to consider a linear prediction

x = (@(tr),...,5(ta)T. without X ((n — 1)h), X ((n — 2)h), etc.



Remark 2  Assume that the covariance is stationary so the
k(t,t') = kiso(h), with b = |t — ¢/|. Then the proposed
integration method is consistent. Moreovek;if, (1) is s-times
differentiable at the origin, theB [(X ((n + 1)h) — X ((n +
1)h))2] = O(h*). We do not provide the proof of this result in
this paper due to the lack of space. 2

80

40

Remark 3 A variable step-size procedure could also b
proposed by adapting the procedure above.
When f is approximated, it is possible to account for the erro
of approximation off in the proposed integration scheme.
In this case, consider the IK linear predict&r((n + 1)h)
of X((n + 1)h) based onX(nh) and X ((n — i)h) + Wi,
1=0,...,q,where théV;s are independent zero-mean randor
variables with variance equal to

Vi(F (i, u((n— b)) | F™,j =1,....n).
Here, thelV;s carry the uncertainty oi((n — i)h) due to the

?"&;;’f approximation off. Then, f has to be replaced b  Figure 3. Representation ¢f (1, 9,0) = 71 — 0.2z, 75.
in (19).

Tn—1 &n

(n—2)h (n—1)h nh (n+1)h

Figure 1. lllustration of the proposed integration scheme

5. EXPERIMENT

In this section, we present some experimental resultsus-ill
trate the proposed black-box identification and simulagios
cedures. We consider a driven Lotka-Volterra nonlinear ODE

{i'l(t) = fi(z1,z2,u1) = azs — Brize + U1, (20)

2(t) = fa(wr,22,u2) = —721 — da122 + uz, Figure 4. Contour plot in the plane:{,z,) of the absolute
witha=~v=1,8=0.2,6 =0.5and difference betweery;(z1,x2,0) and its approximation
ui(t) = cos?(t/ exp(1)) cos?(t), f1(z1, 2, 0) obtained by our identification procedure. The
us(t) = cosQ(t/ eXp(l))sinQ(t). circles indicate the position of the observations in the
plane 1, z2).

The observation set consists of = 40 samples of the state
vector at evenly spaced instants, ..., (n — 1)h, with b =

0.5, simulated using a standard ODE solver and corrupteHw next part of the identification procedure consists in the

: ) 2 : ;
\gf't?h: S?;:S\?;?g/;(g’réomg dgglctjeb;/]otlng. i:ggpgg{jnepn%}eﬁgts approximation of. Here, the two components bare modeled
and X, with constant but unknown mean and a Wendlan§1y o independent r#y and %, with an unknown mean of

2 2
covariance function (see, e.g., Wendland, 2005). The C'?‘iﬁedfgrgg]oe:;ﬁézfé ;Sgﬁsntea\lﬂfrﬁtlexﬁgs(izgli 3‘0’}3‘{2
of Wendland functions provides stationary covariance$ wit ’ L

: azh® + ash®, with h = ||x — x'||. The parameters; > 0 are
compact support. Here, the sadé Wendland function estimated by maximum likelihood. Figures 3 and 4 illustrate

kx(t,s)=o*(1— h/p)j_ (32(h/p)® +25(h/p)® +8h/p+1), the approximation of the first componentfoés obtained in the

. : n f our identification pr re.
h = |t — s|, was chosen for the covariance functions of*° d step of our identification procedure

X; and X,. The parameters? and p were estimated by Oncef has been approximated, we want to predict its future
maximum likelihood (Stein, 1999). Figure 2 shows the statgajectory. In Figure 2, we show the result of the simulatisn
vector components and their approximate first derivatiass, obtained by the procedure described in Section 4 against the
estimated in the first step of identification procedure by IKrue trajectory. The prediction error remains small andsdos
(Section 3.1). grow with time.
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Figure 2. Simulation of the system (20). Solid line;:(t), x2(t), ©1(t) andi2(t) computed by the ODE solver. Circles: the
observations and the estimated derivatives in the ideatific procedure. Crosses: components of the state vealahair
derivative obtained with the proposed simulation methdut Vertical line at = 20 marks the starting time of the simulation.
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