G. Matheron, The intrinsic random functions and their applications, Advances in Applied Probability, vol.98, issue.03, pp.439-468, 1973.
DOI : 10.1017/S0001867800039379

G. P. Rao and H. , Identification of continuous-time systems, IEE Proceedings - Control Theory and Applications, vol.153, issue.2, pp.185-220, 2006.
DOI : 10.1049/ip-cta:20045250

J. Sjöberg, Q. Zhang, L. Ljung, A. Benveniste, B. Delyon et al., Nonlinear black-box modeling in system identification: a unified overview, Automatica, vol.31, issue.12, pp.311691-1724, 1995.
DOI : 10.1016/0005-1098(95)00120-8

E. Vazquez, Modélisation comportementale de systèmes non-linéaires multivariables par méthodes à noyaux et applications, Thèse de doctorat, 2005.

E. Vazquez and E. Walter, Estimating derivatives and integrals with Kriging, Proceedings of the 44th IEEE Conference on Decision and Control, 2005.
DOI : 10.1109/CDC.2005.1583482

URL : https://hal.archives-ouvertes.fr/hal-00369893

E. Vazquez and E. Walter, Intrinsic Kriging and prior information, Applied Stochastic Models in Business and Industry, vol.4, issue.2, 2005.
DOI : 10.1002/asmb.536

H. Wendland, Scattered Data Approximation, 2005.
DOI : 10.1017/CBO9780511617539

P. Young, H. Garnier, and A. Jarvis, The identification of continuous-time linear and nonlinear models : a tutorial with environmental applications, Proc. SYSID'2003, 2003.