Functional Semi-Automated Segmentation of Renal DCE-MRI Sequences

Abstract : In dynamic contrast-enhanced magnetic resonance imaging (DCE- MRI), segmentation of internal kidney structures is essential for functional evaluation. Manual morphological segmentation of cortex, medulla and cavities remains difficult and time- consuming especially because the different renal compartments are hard to distinguish on a single image. We propose to test a semi-automated method to segment internal kidney structures from a DCE-MRI registered sequence. As the temporal intensity evolution is different in each of the three kidney compartments, pixels are sorted according to their time- intensity curves using a k-means partitioning algorithm. No ground truth is available to evaluate resulting segmentations so a manual segmentation by a radiologist is chosen as a reference. We first evaluate some similarity criteria between the functional segmentations and this reference. The same measures are then computed between another manual segmentation and the reference. Results are similar for the two types of comparisons.
Type de document :
Communication dans un congrès
ICASSP 2008, Apr 2008, Las Vegas, United States. pp.525-528, 2008
Liste complète des métadonnées
Contributeur : Fabienne Munier <>
Soumis le : lundi 28 avril 2008 - 15:02:54
Dernière modification le : mercredi 18 mai 2016 - 01:04:33
Document(s) archivé(s) le : vendredi 28 mai 2010 - 17:54:21


Fichiers éditeurs autorisés sur une archive ouverte


  • HAL Id : hal-00276131, version 1



Béatrice Chevaillier, Yannick Ponvianne, Jean-Luc Collette, Damien Mandry, Michel Claudon, et al.. Functional Semi-Automated Segmentation of Renal DCE-MRI Sequences. ICASSP 2008, Apr 2008, Las Vegas, United States. pp.525-528, 2008. <hal-00276131>



Consultations de
la notice


Téléchargements du document