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ABSTRACT

In dynamic contrast-enhanced magnetic resonance imaging

(DCE-MRI), segmentation of internal kidney structures is

essential for functional evaluation. Manual morphological

segmentation of cortex, medulla and cavities remains difficult

and time-consuming especially because the different renal

compartments are hard to distinguish on a single image. We

propose to test a semi-automated method to segment internal

kidney structures from a DCE-MRI registered sequence. As

the temporal intensity evolution is different in each of the

three kidney compartments, pixels are sorted according to

their time-intensity curves using a k-means partitioning al-

gorithm. No ground truth is available to evaluate resulting

segmentations so a manual segmentation by a radiologist is

chosen as a reference. We first evaluate some similarity crite-

ria between the functional segmentations and this reference.

The same measures are then computed between another man-

ual segmentation and the reference. Results are similar for

the two types of comparisons.

Index Terms— Image segmentation, biomedical mag-

netic resonance imaging, biomedical image processing.

1. INTRODUCTION

In DCE-MRI renal anatomical compartment identification is

essential for functional kidney evaluation. Segmentation of

cortex, medulla and cavities is usually performed manually by

a radiologist and can be quite time-consuming and fastidious.

Some semi-automated methods like thresholding, active con-

tours and region-based techniques have been applied in the

medical field but few to renal DCE-MRI [1]. Furthermore it

remains difficult to distinguish internal renal structures from

a single image because of highly changing contrast during

perfusion. To delineate each of the three anatomical compart-

ments radiologists select images that seem to be the most rel-

evant in different phases of the perfusion. They anyway use

only very few frames of the whole temporal sequence. Thus

a slight error in registration or any through-plane motion can

lead to great variations in functional results.

Some authors use time-intensity series to sort the renal

voxels according to their functional profile. Yet very few val-

idation results for real data have been exposed except qual-

itative consistency with manual segmentation or comparison

between renograms [2].

We propose to test a semi-automated method for func-

tional segmentation of renal cortex, medulla and pelvo-

caliceal cavities based on k-means clustering of pixel tem-

poral contrast evolution. The proposed technique requires

less manual intervention and may offer more robustness and

reproducibility thanks to the possibility to use the whole se-

quence or at least a great part of it and not only a few frames.

The resulting segmentations will be compared quantitatively

with anatomical manual ones. As a reference point, discrep-

ancy measures between two manual segmentations will be

performed too.

2. METHOD FOR FUNCTIONAL SEGMENTATION

Let us suppose we have a DCE-MRI sequence with NT im-

ages. Each of the NT images is first registered to a reference

image IR in order to correct respiratory motion. We get then

the temporal evolution of contrast for each pixel of IR.

Our purpose is not to extract kidney but to compare only

its internal segmentation in three regions of interest (ROI),

which are cortex, medulla and cavities (see figure 1 for ex-

amples of frames and figure 3 for ROI masks determined on

the same kidney). Consequently a global mask with N pix-

els is created before functional segmentation. The N pixels

of IR are then classified in K clusters Cj , 1 ≤ j ≤ K ac-

cording to their temporal contrast evolution. Supervised clas-

sification cannot be considered here because we do not have

access to enough manually segmented sequences for build-

ing up a training data set. Among unsupervised classification

methods, k-means partitioning algorithm is well suited to our

problem because of its simplicity and because vectors to be

classified are strongly correlated.

Let be {xi, 1 ≤ i ≤ N} the N pixels of IR to be classi-

fied. A NT -components vector Xi = (P1Xi1, . . . , PNT
XiNT

)
is associated with each pixel, where Xip is the contrast at

time p for the pixel xi and (P1, . . . , PNT
) a weight vector. In

order to get the optimal partition C = {Cj , 1 ≤ j ≤ K} the

k-means algorithm minimizes the cost function correspond-

ing to the global distorsion over classes
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Fig. 1. Example of frames during arterial peak, filtration and

late phase

I(C) =
K∑

j=1

∑

xi∈Cj

‖Xi − μj‖2 (1)

where μj is the centroid or prototype vector of all the points

xi in the cluster Cj , i.e.

μj =
∑

xi∈Cj

Xi (2)

The weight vector is determined according to the time-

intensity curve of the entire kidney in order to enforce the

more significant perfusion phases (baseline, arterial peak, fil-

tration and late phase) and to reduce the influence of equilib-

rium phase, where the three compartments have similar con-

trast (see figure 2).
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Fig. 2. Typical time-intensity curves for cortex, medulla and

cavities

Every cluster is then associated with the anatomical com-

partment of the reference anatomical segmentation that has

the more common pixels with it. This allows getting three ar-

eas corresponding to the three anatomical compartments but

an observer could also easily merge some of the K clusters to

get the same result.
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(a) Anatomical manual segmentation (OP1)
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(b) Anatomical manual segmentation (OP2)
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(c) Functional semi-automated segmentation

Fig. 3. Example of cortex, medulla and cavities segmenta-

tions

3. EXPERIMENT

3.1. Materials

Eight two-dimensional DCE-MRI sequences of normal kid-

ney perfusion with 256 low resolution frames (initial matrix

size 256× 256, pixel size between 1,172 mm and 1,875 mm)

are used. A rectangular area covering kidney was selected:

corresponding matrix sizes varie between 47×35 and 84×59.

To correct respiratory motion a rigid registration including

translations and rotation was performed before segmentation;

mutual information was used as a similarity measure because

of fast changing contrast during perfusion [3]. Nevertheless

through-plane motions remain and acquisition is very noisy.

Three images of different perfusion phases can be seen on

figure 1.
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Test OP2 Auto Auto Auto

Clusters 3 5 6 7

WCP 69.8 74.3 75.4 75.9

PO 71.8 70.9 75.3 74.9

PE 9.2 17.0 19.5 17.3

SI 0.79 0.75 0.77 0.77

MD 0.6 0.7 0.7 0.6

(a) Cortex

Test OP2 Auto Auto Auto

Clusters 3 5 6 7

WCP 84.4 79.2 78.4 75.7

PO 84.0 79.7 77.0 76.7

PE 56.6 63.1 55.4 52.1

SI 0.70 0.67 0.66 0.68

MD 1.0 1.3 1.2 1.1

(b) Medulla

Test OP2 Auto Auto Auto

Clusters 3 5 6 7

WCP 74.9 59.1 63.1 68.2

PO 73.9 57.2 60.9 66.2

PE 16.1 7.0 8.0 18.0

SI 0.77 0.69 0.70 0.71

MD 0.8 0.7 0.6 1.1

(c) Cavities

Test OP2 Auto Auto Auto

Clusters 3 5 6 7

WCP 74.9 71.3 72.7 73.5

(d) Percentage of well classified pixels in global kidney

Table 1. Similarity measures for segmentations of the three

ROI, where OP1 is considered as a reference

3.2. Morphological manual segmentation

Two experienced radiologists (OP1, OP2) reviewed the dy-

namic registered sequences in order to delineate three ROI

which are the cortex, the medulla and the pelvo-caliceal cavi-

ties. The procedure was as follows:

• visualization of the sequence,

• selection of a frame in the late phase with cavities well

delineated and segmentation of the cavities,

• selection of the cortical enhancement peak, allowing

segmentation of the cortex and the medulla (by differ-

ence with the cavities previously underlined).

The entire kidney mask is the common area of the two entire

kidneys delineated by the two radiologists and the three inter-

nal ROI are included in this global mask. The same mask is

used for functional segmentation. An example of such man-

ual segmentations is shown on figure 3(a) et (b).

Test OP1 Auto Auto Auto

Clusters 3 5 6 7

WCP 89.7 78.2 80.9 81.7

PO 89.0 74.0 79.3 79.2

PE 36.1 35.6 36.8 34.1

SI 0.79 0.70 0.73 0.74

MD 0.7 0.9 0.8 0.8

(a) Cortex

Test OP1 Auto Auto Auto

Clusters 3 5 6 7

WCP 60.3 68.2 68.0 66.4

PO 60.5 69.9 67.1 67.9

PE 11.8 32.4 25.8 22.4

SI 0.70 0.69 0.68 0.71

MD 0.80 1.2 1.1 1.0

(b) Medulla

Test OP1 Auto Auto Auto

Clusters 3 5 6 7

WCP 81.8 63.6 66.9 74.1

PO 82.2 63.3 65.9 72.8

PE 32.4 9.9 11.5 19.3

SI 0.77 0.72 0.73 0.76

MD 0.9 0.6 0.6 0.9

(c) Cavities

Test OP1 Auto Auto Auto

Clusters 3 5 6 7

WCP 74.9 72.6 73.5 73.8

(d) Percentage of well classified pixels in global kidney

Table 2. Similarity measures for segmentations of the three

ROI. where OP2 is considered as a reference

3.3. Comparing morphological and functional segmenta-
tions

For each of the eight subjects a morphological manual seg-

mentation is chosen as a reference. The test segmentation can

be the other morphological manual segmentation or a func-

tional segmentation obtained by the proposed method.

The two segmentations to be compared can be considered

as two binary maps R (reference) and T (test) with label 1
inside the ROI and 0 outside. Four types of pixels can then be

defined, according to their labels in the two maps:

Pixel type Label in R Label in T

True positive (TP) 1 1

False Negative (FN) 1 0

False Positive (FP) 0 1

True Negative (TN) 0 0

Four similarity measures between the reference segmen-
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tation and the test segmentation are then computed for each

ROI:

• percentage overlap PO = 100×TP/(TP +FN), i.e.

percentage of pixels of the reference ROI recovered in

test segmentation,

• percentage extra PE = 100×FP/(TP +FN), i.e. the

number of pixels that are in the test ROI while they are

out of reference ROI, divided by the number of pixels

in the reference ROI,

• similarity index SI = (2 × TP )/(TP + FN + FP ).
SI is sensitive to both differences in size and location

[4]. For instance two equally sized ROI that share half

of their pixels would yield SI = 1/2. A ROI covering

another that is twice as little would give SI = 2/3. For

a perfect segmentation the SI value would be 1.

• mean distance (in pixel) between contours of test and

reference segmentation (MD).

Among these criteria only SI does not depend on the choice

of a reference segmentation but the same values appear twice

in the results table to make the comparison easier.

4. RESULTS

Examples of two manual anatomical segmentations and of

a functional semi-automated segmentation are shown on fig-

ure 3: the total number of pixels varies here between 604 and

750 for cortex, 652 and 667 for medulla, 159 and 204 for

cavities. Segmentations are tested for a predefined number of

clusters K that varies between 5 and 7. The k-means algo-

rithm minimizes global distorsion, so cavities whose surface

is much smaller than cortex or medulla are often not identi-

fied for K = 3 or 4 because they may have little weight in

cost function. On the other hand pixels in the same anatomi-

cal compartment (particularly in cortex or medulla) can have

relatively different time-intensity curves and are split up in

several clusters. For K ≥ 8 some clusters that have very few

pixels might be not relevant; moreover it may become diffi-

cult for the observer to merge them unambiguously.

Tables 1 and 2 show means over the eight subjects and the

percentage of globally well classified pixels (WCP) for each

type of ROI and for the entire kidney regions respectively for

OP1 and OP2 as a reference. WCP for a given ROI is the total

number of TP pixels over the eight subjects, divided by the

total number of pixels for this ROI. WCP for entire kidney is

the total number of TP for all the ROI over the eight subjects,

divided by the total number of classified pixels. WCP is a

little different from average PO inasmuch as cases with small

kidneys have less influence on WCP.

Discrepancy measures between two manual segmenta-

tions are similar to those observed between automatic and

any of the manual segmentations. In particular globally WCP

are almost the same. Nevertheless cavities are rather under-

estimated by automatical segmentation in comparison with

manual ones but as a result, pixels classified as cavities in

functional segmentation are most of the time recognized as

cavities by radiologists. The worst results are obtained for

medulla, with a particularly high PE, but this is generally true

both for manual and automatic segmentations: medulla is an

intermediate area with complex shape and remains anyway

difficult to segment manually.

Increasing the number of clusters does not systematically

improve each criteria, even if the global WCP and most of the

time SI become a little larger. For instance an increase in PO

for cavities is coupled with an increase in PE.

5. CONCLUSION AND PERSPECTIVES

We have tested a method for functional segmentation of

kidney structures from DCE-MRI sequences and compared

the resulting segmentations with manual ones. Discrepancy

measures between two manual segmentations are similar to

those observed between automatic and any of the manual

segmentations, indicating that the semi-automated method

might be suitable for renal segmentation in DCE-MRI. Func-

tional curves are directly obtained from the prototype vectors

resulting from the k-means algorithm. Moreover generated

time saving is considerable: manual segmentation requires

between 12 and 15 minutes for one sequence versus about

twenty seconds for automatic segmentation and cluster merg-

ing by an observer. As a further work, we intend to optimize

the weight vector and select automatically the number of

clusters. Pixels that remain spatially isolated after merging

(see figure 3(c)) are likely misclassified and would require a

specific treatment. We plan also to do similar tests in case of

automatical kidney extraction.
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