Functional semi-automated segmentation of renal DCE-MRI sequences using a Growing Neural Gas algorithm

Abstract : In dynamic contrast-enhanced magnetic resonance imaging (DCE- MRI), segmentation of internal kidney structures like cortex, medulla and pelvo-caliceal cavities is necessary for functional assessment. Manual segmentation by a radiologist is fairly delicate because images are blurred and highly noisy. Moreover the different compartments cannot be delineated on a single image because they are not visible during the same perfusion phase for physiological reasons. Nevertheless the differences between temporal evolution of contrast in each anatomical region can be used to perform functional segmentation. We propose to test a semi-automated split and merge method based on time-intensity curves of renal pixels. Its first step requires a variant of the classical Growing Neural Gas algorithm. In the absence of ground truth for results assessment, a manual anatomical segmentation by a radiologist is considered as a reference. Some discrepancy criteria are computed between this segmentation and the functional one. As a comparison, the same criteria are evaluated between the reference and another manual segmentation.
Type de document :
Communication dans un congrès
EUSIPCO'08, Aug 2008, Lausanne, Switzerland. Proceedings on CDROM (5 p.), 2008
Liste complète des métadonnées


https://hal-supelec.archives-ouvertes.fr/hal-00327613
Contributeur : Sébastien Van Luchene <>
Soumis le : jeudi 9 octobre 2008 - 08:59:59
Dernière modification le : mercredi 18 mai 2016 - 01:04:33
Document(s) archivé(s) le : vendredi 4 juin 2010 - 12:23:15

Fichier

Supelec416.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00327613, version 1

Collections

Citation

Béatrice Chevaillier, Damien Mandry, Yannick Ponvianne, Jean-Luc Collette, Michel Claudon, et al.. Functional semi-automated segmentation of renal DCE-MRI sequences using a Growing Neural Gas algorithm. EUSIPCO'08, Aug 2008, Lausanne, Switzerland. Proceedings on CDROM (5 p.), 2008. <hal-00327613>

Partager

Métriques

Consultations de
la notice

321

Téléchargements du document

117