
HAL Id: hal-00328174
https://hal-supelec.archives-ouvertes.fr/hal-00328174

Submitted on 9 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Power Allocation Game for Uplink OFDM
Systems

He Gaoning, Sophie Gault, Merouane Debbah, Eitan Altman

To cite this version:
He Gaoning, Sophie Gault, Merouane Debbah, Eitan Altman. Distributed Power Allocation Game
for Uplink OFDM Systems. WNC3, Apr 2008, Germany. 7 p. �hal-00328174�

https://hal-supelec.archives-ouvertes.fr/hal-00328174
https://hal.archives-ouvertes.fr


Distributed Power Allocation Game
for Uplink OFDM Systems

Gaoning He, Sophie Gault
Motorola Labs

91193 Gif-sur-Yvette - FRANCE
Email: gaoninghe@motorola.com

sophie.gault@motorola.com

Merouane Debbah
Supélec
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Abstract—In this paper, we consider the uplink of a single
cell network with K users simultaneously communicating with a
base station using OFDM modulation over N carriers. In such
a scenario, users can decide their power allocation based on
three possible Channel State Information (CSI) levels, which are
called complete, partial and statistical. The optimal solutions for
maximizing the average capacity with complete and statistical
knowledge are known to be the water-filling game and the
uniform power allocation respectively. We study the problem in
the partial knowledge case. We formulate it as a strategy game,
where each player (user) selfishly maximizes his own average
capacity. The information structure that we consider is such that
each player, at each time instant, knows his own channel state, but
does not know the states of other players. We study the existence
and uniqueness of Nash equilibrium. We find the optimal solution
for the symmetric game considering two positive channel states,
and we show the optimization problem for any L states.

I. INTRODUCTION

The extension of OFDM [1] to allow simultaneous commu-
nication with multiple users is called OFDMA (Orthogonal
Frequency Division Multiple Access) [2]. For this setting,
efficient scheduling algorithms to optimize the users’ rate exist
and are based on multi-user diversity schemes [3] (only users
with the best carrier to noise ratio (CNR) conditions access
the network). This procedure is centralized: the scheduler
(generally the base station) assigns to each mobile the carriers
it is allowed to use. It requires an estimation by the scheduler
of the N carriers of the K users, and hence an important
feedback load. However, the uplink and downlink signalling
used in the estimation do not only consume system resource
but also increase the complexity. Moreover, for high mobility,
the channel conditions vary and the algorithm becomes inaccu-
rate. To reduce the feedback load, selective multiuser diversity
algorithms have been introduced: only the users that have a
CNR above a threshold send feedback to the scheduler [4] .
Multiple feedback thresholds can be used [5] and are generally
found numerically.

A way to avoid the constraints of a centralized procedure
is to implement a decentralized one. Unlike centralized pro-
cedure, few signalling consumption is the main advantage of
a decentralized scheme. Indeed, centralized schemes gener-
ally require complete information (all channels of all users)
whereas in a decentralized one, each user is able to make

decision based on partial information (e.g. only his own chan-
nel information), and this knowledge can be easily obtained
by using few downlink signalling (e.g. a downlink training
sequence). The potential gain of a decentralized procedure
therefore lies in the fact that we can get rid of the signalling
needed for a user to obtain other users’ channel information,
while a great amount of signalling is needed in a centralized
system to get all users’ information. Especially when the num-
ber of users increases or when the channel rapidly changes,
this signalling consumption becomes non-negligible or even
unacceptable. A natural framework to model decentralized
schemes where users interact is game theory, which studies
competition (as well as cooperation) between independent
actors. Tools of game theory have already been frequently
used as a central framework for modeling competition and
cooperation in networking, see for example [6] and references
therein.

In a fading multiple-access channel context, a game the-
oretic framework has been used in [7]. Users compete with
rates as utility and powers as moves in the game, in what the
authors call the water-filling game. They show that the unique
Nash equilibrium in this game corresponds to the maximum
Sum-Rate point of the capacity region. [8]. However, their
results rely on the fact that each user has a nearly complete
knowledge of the system (at least the knowledge of global
interference and the condition to apply water-filling), and in
particular, perfect channel state information (CSI) of all users
in the cell. This is a necessary requirement in order to use
the theory of games with complete information, and an usual
assumption in many papers in the field, as the authors point
out. Nevertheless, it is rarely possible in practice and one can
usually only satisfy at best the requirements knowing only its
own channel.

Power allocation problem has to be reconsidered with the
assumption that one user only knows its own channel. In
this paper, we show that power allocation problem can be
modelled as a strategic non-cooperative game where each user
only has partial knowledge and finds power levels maximizing
his own utility. We study the existence of Nash equilibria
in such context. We analyze the feasibility and practicability
of applying decentralized schemes. Our main objective is to
design a decentralized power allocation scheme modelled as



Fig. 1. Illustration of the uplink an OFDM system

a strategic game under some reasonable assumptions.
The paper is organized in the following form: the system

model is introduced in section II. In section III, we present
the problem and its solution when complete and statistic
information is considered at the transmitter. In section IV,
we provide a strategy game model to solve the problem with
partial information. Finally, numerical results are provided in
section V followed by conclusions in section VI.

II. SYSTEM MODEL

We consider a flat-fading multiple access channel (MAC)
in a single cell network, where K users are simultaneously
communicating with a base station using OFDM modulation
over N carriers. At each time instant, each carrier i of each
user k is characterized by a fading coefficient h

(i)
k , k =

1, . . . ,K, i = 1, . . . , N . It is distributed according to some
(known) distribution function. We will denote by H a random
variable having this distribution.

In the context, users have to decide how to allocate their
power across time and subcarriers, based on some knowledge
and information they may have, which may be complete,
partial or only statistical CSI. More precisely, complete CSI
means that, at each time instant, one user knows his fading
as well as others’ fadings; partial CSI means that one user
knows only his fading and in the third case, each user only
has a statistical knowledge of all channels. In this paper, we
focus on the case of partial CSI, and we always assume that
users have at least statistical knowledge of the fading and know
the power budgets of the other users, which is expressed as

N∑
i=1

EH

[
p
(i)
k

]
≤ P̄k. (1)

On each carrier i, user k sends the information x
(i)
k =√

p
(i)
k s

(i)
k , where s

(i)
k is the transmitted data such as

E
[
|s(i)

k |2
]

= 1. Note that a set Mi ⊆ {1, . . . ,K} of users
can select the same frequency carrier i, which introduces
interference. As a consequence, the received signal on carrier
i at the base station is given by:

y(i) =
∑

k∈Mi

h
(i)
k x

(i)
k + n(i) (2)

where n(i) is a zero mean Gaussian noise with variance σ2.
At the base station, the SINR of user k on carrier i is

therefore:

SINR(i)
k =

p
(i)
k h

(i)
k

σ2 +
∑K

j=1
j 6=k

p
(i)
j h

(i)
j

. (3)

The corresponding ergodic capacity of user k is given by:

Ck = EH

 N∑
i=1

log2

1 +
p
(i)
k h

(i)
k

σ2 +
∑K

j=1
j 6=k

p
(i)
j h

(i)
j


 . (4)

In a game theoretic context, the purpose of each user is to
maximize selfishly its capacity.

III. BACKGROUND

First, we present the existing solutions correspond to the
two scenarios: complete and statistical knowledge at the
transmitter that we mentioned above, and are also inherently
associated to particular implementation. We show that the
complete knowledge scheme requires a centralized (or semi-
distributed) implementation whereas the other two (partial
and statistical) can be implemented in a fully decentralized
way. For simplicity of presentation, we consider a single cell
network with two users simultaneously communicating with
a base station in a single carrier setting. Each user k = 1, 2
chooses a strategy pk ∈ R+.

A. Complete knowledge at Tx

With complete CSI, the case of a single carrier is studied in
the first part of [7]. Let us denote by p1(h1, h2) and p2(h1, h2)
the strategies of the two users. For a fixed strategy p2(h1, h2),
finding the optimal strategy p1(h1, h2) for user 1 requires
solving the following optimization problem

max C1 = max
p1(h1,h2)

Eh1,h2

[
log2

(
1 + p1(h1,h2)h1

σ2+p2(h1,h2)h2

)]
s.t. Eh1,h2 [p1(h1, h2)] ≤ P̄1

p1(h1, h2) ≥ 0
(5)

and similarly for the second user. The solution of the opti-
mization problem is the waterfilling power allocation [9]

p1(h1, h2) =
(

λ1 −
σ2 + p2(h1, h2)h2

h1

)+

(6)

where (x)+ = max{x, 0} and λ1 is chosen in order to satisfy
the constraint

Eh1,h2

(
λ1 −

σ2 + p2(h1, h2)h2

h1

)+

= P̄1. (7)

Note that the solution (6) depends on the power allocation
of the second user, which the first user does not know, and
reciprocally for the second user. However, given the game
model, each user is able to adjust his strategy adaptively to its
guess of the strategy of the other user. In [7], the authors show
that this process converges to a unique equilibrium and that it
is time-sharing (i.e., for a given realization of the fading, the



optimal p1(h1, h2) and p2(h1, h2) can not be simultaneously
strictly positive). It corresponds to the maximum Sum-Rate
point of the capacity region: p1(h1, h2) =

(
λ1 − σ2

h1

)+

, when h1 ≥ λ2
λ1

h2

p2(h1, h2) =
(
λ2 − σ2

h2

)+

, when h2 ≥ λ1
λ2

h1.
(8)

with p1(h1, h2) = 0 and p1(h1, h2) = 0 in other cases.
The waterfilling levels are obtained by solving the system of
equations

Eh1,h2

[(
λ1 − σ2

h1

)+
∣∣∣∣ h1 ≥ λ2

λ1
h2

]
= P̄1

Eh1,h2

[(
λ2 − σ2

h2

)+
∣∣∣∣ h2 ≥ λ1

λ2
h1

]
= P̄2.

(9)

Thus, an interesting conclusion is that the result of the selfish
behavior of the users will result in the joint optimization of
the global capacity of the channel.

However, in (8), there exists two conditions to indicate users
whether they should transmit power or not. For instance, the
water-filling condition for user 1 is: h1 ≥ λ2

λ1
h2, where λ1 and

λ2 are both known to user 1 (one can find in (9) that λ1 and
λ2 only depend on the distribution of h1 and h2), but h2 (the
channel realization of user 2) may not be known by user 1. In
practice, for such a scenario with multiple users (e.g. uplink
of multi-user OFDM), a certain amount of UL/DL signallings
are needed to be exchanged between the base station and
users so that each user can obtain the information for this
condition. However, when the number of users is large, the
corresponding amount of signalling will dramatically reduce
the global throughput and become unacceptable for a real
system. It is for this reason that we are motivated to investigate
a novel power allocation scheme such that each user is able
to decide and allocate his power without knowing the channel
states of others, therefore, the UL/DL signalling mentioned
above are not required any more.

B. Statistical knowledge at Tx
When users have only statistical knowledge of their channel,

as well as of the channels of other users, the strategies of the
two users p1 and p2 can not depend on the realization of
the fading and are necessarily fixed. For a fixed strategy p2,
finding the optimal strategy p1 for user 1 requires solving the
following optimization problem

max C1 = max
p1

Eh1,h2

[
log2

(
1 + p1h1

σ2+p2h2

)]
s.t. p1 ≤ P̄1

p1 ≥ 0

(10)

and similarly for the second user. Since the function to
maximize is an increasing function of p1, the solution of the
optimization problem (10) is obviously:

p1 = P̄1 (11)

and similarly for the second user p2 = P̄2. Since the users do
not have any information about their channel, the best they can
do is always transmit at the maximal constant power they can
afford. This results in (time domain) uniform power allocation.

IV. DISTRIBUTED POWER ALLOCATION GAME

Here, we consider a distributed power allocation scheme
with partial knowledge at the transmitter. To be precise, at
each time instant, each user knows the realization of its own
channel and the statistical knowledge of other user’s channel.
In this case, p1 can only depend on h1 and p2 on h2. Let us
denote by p1(h1) and p2(h2) the strategies of the two users.
For a fixed strategy p2(h2), finding the optimal strategy p1(h1)
for user 1 requires to solve the following optimization problem

max C1 = max
p1(h1)

Eh1,h2

[
log2

(
1 + p1(h1)h1

σ2+p2(h2)h2

)]
s.t. Eh1 [p1(h1)] ≤ P̄1

p1(h1) ≥ 0
(12)

and similarly for the second user. Note that the term p2(h2) is
unknown to the first user and that its strategy can not depend
on the particular realization of h2. User 1 can only rely on the
assumption of rationality of user 2 to deduce its strategy. For
fixed strategy p2(h2), via Lagrangian duality, the solution of
the optimization problem (12) is given by the equation:

Eh2

[
h1

σ2 + p1(h1)h1 + p2(h2)h2

]
=

1
λ1

(13)

where λ1 is chosen in order to satisfy the constraint

Eh1 [p1(h1)] = P̄1. (14)

Note that the solution of (13) depends on the power allocation
of the second user, which the first user does not know, and
reciprocally for the second user. However, given the game
model, each user is able to adjust his strategy adaptively to its
guess of the strategy of the other user.

For simplicity of presentation, we first consider the scenario
of two positive channel states. We then extend it into arbitrary
channel states in the end of this section.

A. Two channel states

In order to simplify the game problem, one assumption has
been used in [10] and [11], where the power levels are assumed
to be discrete. However, we introduce a slightly different
assumption as follows,

Main assumption: channel states are discrete.
Our main assumption is closely related to the way how

feedback channel information are signalled. Once estimated
at the receiver side, channel coefficients are feedback to the
transmitter with a given precision. Since these are represented
on a finite number of bits (e.g. n bits), channels coefficients are
mapped on a finite number of 2n states. When n = 1, channel
coefficient is coded on 1 bit and may take two possible values
(e.g. a representing “bad” channel values, and b representing
“good” channel values). When n = 8, channel coefficient
is coded on 28 bits. Thus, one can always choose a certain
quantization precision that is sufficient to describe a real
channel.

Assumption 1: Each carrier’s channel gain can be 0 with
probability ρ0, and can also be other two positive values a1 and



a2 (w.l.o.g. a1 < a2) with probability ρ1 and ρ2 respectively.
We have ρ0 + ρ1 + ρ2 = 1.

Assumption 2: Both users have the same power constraint,
define: P̄ , P̄1 = P̄2. We have

ρ1pk(a1) + ρ2pk(a2) = P̄ , k = 1, 2 (15)

where pk(a1) and pk(a2) represents the power that user k
allocates on his carrier when the channel gain is a1 and a2

respectively. From (15), we have

pk(a2) =
P̄ − ρ1pk(a1)

ρ2
(16)

1) Game Formulation: In this part, we focus on the
problem of game modeling. We consider a strategic non-
cooperative game with two players, which completely char-
acterized by three elements as follows,

Γ ,
[
K, {Pk}k∈K , {uk}k∈K

]
• Player set: K , {1, 2}, where K , ‖K‖ = 2.
• Action set: {P1,P2}, where P1 , {p1(a1), p1(a2)} and
P2 , {p2(a1), p2(a2)}. Note that Pk can take any
possible value that satisfies power constraint (15).

• Payoff (or utility) function set: {u1 (p∗1, p2) , u2 (p1, p
∗
2)},

where we denote p1, p2 as p1(a1), p2(a1) for simplifying
the following expressions. Note u1, u2 are the selfish
average capacity as shown in (12). By using (16), we
define

u1(p∗1, p2) = ρ2
1 log2

(
1 + a1p∗1

σ2+a1p2

)
+

+ ρ1ρ2 log2

(
1 +

a2
P̄−ρ1p∗1

ρ2
σ2+a1p2

)
+

+ ρ1ρ2 log2

(
1 + a1p∗1

σ2+a2
P̄−ρ1p2

ρ2

)
+

+ ρ2
2 log2

(
1 +

a2
P̄−ρ1p∗1

ρ2

σ2+a2
P̄−ρ1p2

ρ2

)
.

(17)

and

u2(p1, p
∗
2) = ρ2

1 log2

(
1 + a1p∗2

σ2+a1p1

)
+

+ ρ1ρ2 log2

(
1 +

a2
P̄−ρ1p∗2

ρ2
σ2+a1p1

)
+

+ ρ1ρ2 log2

(
1 + a1p∗2

σ2+a2
P̄−ρ1p1

ρ2

)
+

+ ρ2
2 log2

(
1 +

a2
P̄−ρ1p∗2

ρ2

σ2+a2
P̄−ρ1p1

ρ2

)
.

(18)

In such a non-cooperative game, each player has to maxi-
mize its own payoff function, given the other player’s strategy
and regardless of the consequence his strategy’s choice may
have on the other player and thus on the overall performance.
This means that players play selfishly: they do not communi-
cate before play, and have independent objectives.

2) Nash Equilibrium: A Nash equilibrium for a game is
a set of strategies such that no single player can improve its
utility by deviating. However, such a equilibrium does not
necessarily exist. In our setting, {p?

1, p
?
2} is a Nash equilibrium

if given any other strategies p1 ∈ P1 and p2 ∈ P2,{
u1(p?

1, p
?
2) ≥ u1(p1, p

?
2)

u2(p?
1, p

?
2) ≥ u2(p?

1, p2).
(19)

First, we investigate the existence of an equilibrium in our
game model.

Theorem 1: A Nash equilibrium exists in game Γ =[
K, {Pk}k∈K , {uk}k∈K

]
.

The proof of Theorem 1 can be found in appendix A.
Second, we investigate the uniqueness of such an equilib-

rium in our game model.
Theorem 2: The game Γ =

[
K, {Pk}k∈K , {uk}k∈K

]
has a

unique equilibirum.
Proof. From Theorem 1, we know that there exists at least

one Nash equilibrium in the game. Let p? = {p?
1, p

?
2} denote

this Nash equilibrium. By definition (19), p? has to satisfy
p? = r(p?), where r(p?) = (r1(p?), r2(p?)), more pricisely,
it has to both satisfy the following two equations p?

1 = r1(p?
2) = max

p∗1
u1(p∗1, p

?
2)

p?
2 = r2(p?

1) = max
p∗2

u2(p?
1, p

∗
2)

(20)

Note that rk(p?
−k) and rk(p?) are equivalent, which are called

player k’s best-response function.
Now we assume that Nash equilibrium is not unique

and apart from p? there exists at least another one, e.g.
p† =

{
p†1, p

†
2

}
, and p† 6= p?. From definition, it should

satisfy (20). However, since utility function uk is concave and
differentiable, for a fixed strategy p2, there is an unique best
strategy p′1 that satisfies p′1 = r1(p2); for a fixed strategy p1,
there is also an unique best p′2 that satisfies p′2 = r1(p1). So
the solution to the equation group (20) is unique and given by
equation group {

∂u1
∂p∗1

= 0
∂u2
∂p∗2

= 0
(21)

It contradicts to our assumption that p† 6= p?, therefore, p† =
p?. We proved Theorem 4.�

3) Symmetric Game: In this part, we consider the game
with the following assumption,

Assumption 3: Both users apply the same power strategy
if their observations on channel state(s) are symmetric. Both
user do not allocate any power when the carrier’s channel gain
is 0.

Note that it is a realistic assumption for many practical
reasons. We define{

p(a1) , p1(a1) = p2(a1)
p(a2) , p1(a2) = p2(a2)

(22)

Now, both users should have an agreement on applying the
power allocation strategy {p(a1), p(a2)}. The decision of
applying p(a1) or p(a2) only depends on their own channel



realization. From (15), we have ρ1p(a1) + ρ2p(a2) = P̄ . And
we can rewrite the original optimization problem (12) as

max C1 = max
p(a1)

ρ2
1 log2

(
1 + a1p(a1)

σ2+a1p(a1)

)
+

+ρ1ρ2 log2

(
1 + a1p(a1)

σ2+a2· P̄−ρ1p(a1)
ρ2

)
+

+ρ1ρ2 log2

(
1 +

a2· P̄−ρ1p(a1)
ρ2

σ2+a1p(a1)

)
+

+ρ2
2 log2

(
1 +

a2· P̄−ρ1p(a1)
ρ2

σ2+a2· P̄−ρ1p(a1)
ρ2

)
s.t. p(a1) ≤ P̄

ρ1

p(a1) ≥ 0
(23)

In general, the convexity of function C1(p(a1)) depends on
the relationship between a1, a2, ρ1, ρ2, P̄ and σ2. However,
we are more interested in the low noise regime (σ2 → 0). We
define

C̃1(p(a1)) , lim
σ2→0

C1(p(a1))

= ρ2
1 + ρ2

2 + ρ1ρ2

[
log2

(
1 + a1p(a1)

a2· P̄−ρ1p(a1)
ρ2

)
+

+ log2

(
1 +

a2· P̄−ρ1p(a1)
ρ2

a1p(a1)

)]
(24)

Theorem 3: Function C̃1(p(a1)) is decreasing on(
0, a2P̄

a1ρ2+a2ρ1

)
and increasing on

(
a2P̄

a1ρ2+a2ρ1
, P̄

ρ1

)
. The so-

lution of the maximization problem max
p(a1)

C̃1 is given by

p?(a1) =
{

0, a2ρ1 ≥ a1ρ2
P̄
ρ1

, a2ρ1 < a1ρ2
(25)

which gives the best power strategy

{p?(a1), p?(a2)} =

{
0, P̄

ρ2

}
, a2ρ1 ≥ a1ρ2{

P̄
ρ1

, 0
}

, a2ρ1 < a1ρ2

(26)

The proof of Theorem 3 can be found in appendix B.
Thus, an interesting result is that the choice of the best power
strategy depends not only on the channel states but also on
the probability that each state happens. In general, the optimal
solution will focus all the energy to the channel state that has
better condition but with less probability to appear.

B. More channel states

In the part, we still assume user index k = 1, 2, but
each channel gain has L (L > 2) possible values. We keep
assumption 2 and 3 above, and reclaim assumption 1 as:

Assumption 4: Each carriers channel gain can be 0 with
probability ρ0, and can also be L positive values {a1, . . . , aL}
(w.l.o.g. a1 < . . . < aL), each happens with probability
ρ1, . . . , ρL respectively. We have

∑L
l=0 ρl = 1.

Based on the assumption 3, we define p(al) as

p(al) , p1(al) = p2(al), l = 1, . . . , L

Now, the power strategy set is {p(a1), . . . , p(aL)}. We rewrite
the optimization problem (12)

max
p

∑L
n=1

∑L
m=1ρmρn log2

(
1 + anp(an)

σ2+amp(am)

)
s.t.

∑L
l=1 ρlp(al) = P̄

p(al) ≥ 0, l = 1, . . . , L

The objective function of this optimization problem is non-
convex. We propose an Zero Interference Searching (ZIS)
algorithm as follows,

Algorithm 1 Zero interference searching (ZIS)
initialize c = 0
for l = 1 to L do

c′ = ρl log2(1 + alP̄
ρlσ2 )

if c′ > c then
ξ = l

c = ρl log2(1 + aξP̄
ρξσ2 )

end if
end for Algorithm finishes.

Finally, the output of this algorithm can be shown as
(p(a1), . . . , p(aL)) = (0, . . . , 0, P̄

ρξ
, 0, . . . , 0). Each step in-

sists in searching among the cases that all the energy is
dedicated to only one best channel state (depends on both
al and ρl), where no interference is allowed. The algorithm
complexity is O(L).

V. NUMERICAL RESULTS

In this section, the simulation results are given and analyzed
by using the following parameter sets:

a1 a2 ρ1 ρ2 P̄ σ2

set 1 1 1.2 0.5 0.5 1 0.5
set 2 1 3 0.5 0.5 1 0.1
set 3 1 10 0.5 0.5 1 0.1

Fig. 2. The non-convexity of function C1(p(a1)) (left: set 1; right: set 2)

In Fig. 2, we show the behavior of function C1(p(a1))
(23) in the symmetric game. In the left figure, we use the
parameters from set 1. We find that function C1(p(a1)) is
obviously not convex in p(a1), and the solution p?(a1) is
comprised between 0 and 0.1. In the right figure, we use the
parameters from set 2. In this setting, function C1 shows the
behavior of decreasing and increasing (not convex) and we
have p?(a1) = 0. It is consistent with the result of (25) in the
case of a2ρ1 ≥ a1ρ2.



Fig. 3. Illustration of Nash equilibrium (left: set 2; right: set 3)

Fig. 4. Average capacity comparison among three different information levels
(left: set 2; right: set 3)

In Fig. 3, we show the Nash equilibrium (NE) given by (21).
In the left figure, we use the parameters from set 2; in the right
figure, we use the parameters from set 3. As expected, there
always exists a unique NE for both cases, and it is symmetric,
i.e. the NE for set 2 and set 3 are (0.5,0.5) and (0.6,0.6)
respectively. It is also interesting to note that when the values
of a1 and a2 are relatively close (set 1), the NE is close to the
uniform power allocation (UPA), which is (1,1) in this case;
when a1 and a2 are relatively far (set 2), the NE slightly goes
away from (1,1).

In Fig. 4, we compare the average capacity by using
the parameters from set 2 and set 3 obtained in the three
different information level cases considering: complete, partial
and statistical knowledge at the transmitter side. The SNR is
defined as the ratio between the power constraint P̄ and the
noise variance σ2.

• For the case of complete knowledge, recall (9), we have

λ , λ1 = λ2 =
1
3

[
4P̄ + σ2

(
1
a1

+
2
a2

)]
,

and the results of waterfilling (WF) in (8) gives the best
power strategy (for set 2 and 3)

p?
1(a1, a1) = p?

2(a1, a1) = λ− σ2

a1

p?
1(a2, a2) = p?

2(a2, a2) = p?
2(a1, a2) = p?

1(a2, a1) =
= λ− σ2

a2

p?
1(a1, a2) = p?

2(a2, a1) = 0

• For the case of partial knowledge, the NE is given
by equation group (21). In the low noise regime, the
symmetric equilibrium (SE) is given by (26). However, in
general, if the convexity condition does not hold, since
the objective function is differentiable, one can always
obtain the best strategy by following the two steps:

– Find all the solutions satisfying ∂C1
∂p(a1)

= 0.
– Compare these solutions together with two borders

p(a1) = 0 and p(a1) = P̄
ρ1

, the one that maximizes
C1(p(a1)) is the best strategy p?(a1).

In this simulation, with our parameter settings, the best
strategy is p?(a1) = 0 within the range of SNR (0-30dB).

• For the case of statistical knowledge, the best strategy is
UPA given by (11).

From Fig. 4, the curves with complete knowledge at
Tx provides the highest capacity while the curves with
statistical knowledge at Tx provides the lowest. In the case
of partial knowledge, the average capacity gain of symmetric
equilibrium is higher than Nash equilibrium. Moreover, we
find that the efficiency of Nash equilibrium depends on the
relationship between a1 and a2. The efficiency becomes
lower/higher when the values of two channel states are
close/far.

VI. CONCLUSION

In the case of uncertain topology when only local informa-
tion is available, we have provided a power allocation strategy,
which depends only on the number of channel states. This
strategy was shown to outperform classical uniform power
allocation scheme and was not far from the complete CSI
in the low SNR regime. Moreover, from a game theoretic
view, we have shown the existence and uniqueness of Nash
equilibrium. Extension is being studied for the case of MIMO
and correlated equilibrium.

APPENDIX

A. Proof of Theorem 1
In order to prove Theorem 1, we introduce Theorem 4,
Theorem 4: A Nash equilibrium exists in game Γ =[
K, {Pk}k∈K , {uk}k∈K

]
if the following two conditions are

satisfied, for all k = 1, . . . ,K:
1) Pk is a nonempty, convex, and compact subset of some

Euclidean space RK .
2) uk(P) is continuous in P and quasi-concave in Pk.
From (15), we know p1(a1), p2(a1) ∈ [0, P̄

ρ1
], condition 1

is obviously true. For condition 2, first we prove that uk is
a concave function in Pk, then we show that any concave
function is quasi-concave.

Let gi (p∗k (a1)) , i = 1, . . . , 4 be the expressions that inside
four log functions in (17). It is easy to see that each gi (.) ∀i
is a linear function of p∗k(a1), and so it is concave and also
positive. Now, we introduce Theorem 5,

Theorem 5: f(g1(x), . . . , gm(x)) =
∑m

i=1 αi log gi(x),
αi > 0 is strictly concave in x if gi are strictly concave and
positive.

Proof. Function f and gi ∀i are continuous and differen-
tiable. The second derivative of function f is

∂2f

∂x2
= αi

[
1
gi

∂2gi

∂x2
− 1

g2
i

(
∂gi

∂x

)2
]



Since gi are strictly concave and positive, we have gi > 0 and
∂2gi

∂x2 < 0. Therefore, we have ∂2f
∂x2 < 0. So, function f is strict

concave in x. �
From Theorem 5, we showed that uk is a concave function

in Pk. Then, we give the definition of quasi-concave,
Definition 1: Function uk : Pk → R is quasi-concave if for

any pk, p′k ∈ Pk, we have

uk(λpk + (1− λ)p′k) ≥ min {uk(pk), uk(p′k)}

for all λ ∈ (0, 1).
Theorem 6: A concave function is quasi-concave.
Proof. The theorem follows immediately from the observa-

tion that if uk is quasi-concave, then for all pk, p′k ∈ Pk, we
have

uk(λpk + (1− λ)p′k) ≥ λuk(pk) + (1− λ)uk(p′k) ≥
≥ min {uk(pk), uk(p′k)}

Function uk is concave and also quasi-concave, therefore, we
proved condition 2 in Theorem 4. �

Thus, from Theorem 4-6, we complete the proof for
Theorem 1. We can confirm the existence of Nash equilibrium
in our game model.�

B. Proof of Theorem 3.
Function C̃1(p(a1)) is continuous and differentiable. From

its first derivative
∂C̃1(p(a1))

∂p(a1)
= a1a2ρ1ρ2

2P̄

ln 2[a1ρ2p(a1)+a2(P̄−ρ1p(a1))] ·

·
[

1
a2(P̄−ρ1p(a1))

− 1
a1ρ2p(a1)

] (27)

We find that it is decreasing on
(
0, a2P̄

a1ρ2+a2ρ1

)
and increasing

on
(

a2P̄
a1ρ2+a2ρ1

, P̄
ρ1

)
. Then we compare C̃1(0) and C̃1( P̄

ρ1
)

when σ2 → 0

C̃1(0) = lim
σ2→0

[
ρ2
1 + ρ2

2 + ρ1ρ2 log2

(
1 + a2P̄

ρ2σ2

)]
C̃1( P̄

ρ1
) = lim

σ2→0

[
ρ2
1 + ρ2

2 + ρ1ρ2 log2

(
1 + a1P̄

ρ1σ2

)]
(28)

From (28), we find that when a2
ρ2

> a1
ρ1

, C̃1(0) > C̃1( P̄
ρ1

);
when a1

ρ1
> a2

ρ2
, C̃1( P̄

ρ1
) > C̃1(0). Since a1, a2, ρ1, ρ2 are

positive, we have (25), therefore (26). �
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