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A unifying formulation of the Fokker-Planck-Kolmogorov
equation for general stochastic hybrid system's

Julien Bect

Department of Signal Processing and Electronic Systems,
Supelec, Gif-sur-Yvette, France.

Abstract

A general formulation of the Fokker-Planck-Kolmogorov EjRequation for stochastic hybrid systems is presented,
within the framework of Generalized Stochastic Hybrid 8yss (GSHS). The FPK equation describes the time evolu-
tion of the probability law of the hybrid state. Our derivatiis based on the concept of mean jump intensity, which is
related to both the usual stochastic intensity (in the chspantaneous jumps) and the notion of probability currient (
the case of forced jumps). This work unifies all previouslgkn instances of the FPK equation for stochastic hybrid
systems, and provides GSHS practitioners with a tool tovdehie correct evolution equation for the probability law
of the state in any given example.

Key words: Stochastic hybrid systems, Stochastic system with jumpski processes, Fokker-Planck equation

1. Introduction

Among all continuous-time stochastic models of (nonlijeignamical systems, those with the Markov property
are especially appealling because of their numerous nagepties. In particular, they come equipped with a pair of
operator semigroups, the so-called backward and forwarigseups, which are the analytical keys to many prac-
tical problems involving Markov processes. When the sysiemletermined by a stochastic differential equation,
these semigroups are generated by Partial Differentiabftimus (PDE) — respectively the backward and forward
Kolmogorov equations. The forward Kolmogorov PDE, alsownas the Fokker-Planck equation, rules the time
evolutiont — u;, wherey;, is the probability distribution of the staf€, of the system at time This paper deals with
the generalization of this Fokker-Planck-Kolmogorov (FRiguation to the framework of General Stochastic Hybrid
Systems (GSHS) recently proposed by Bujorianu and Lygﬁ,@[

The GSHS framework encompasses nearly all continuousMar&ov models arising in practical applications,
including piecewise deterministic Markov proces$é$|[@re] switching diffusiond[14, 115]. Two kinds of jumps are
allowed in a GSHS: spontaneous jumps, defined by a statexdepestochastic intensity(X;), and forced jumps
triggered by a so-called guard s8t Generalized FPK equations have been given in the litexaiarthe case of
spontaneous jumps, for several classes of models; seer@a], Kontorovich and Lyandreﬂl?], Krystul et al.
(L8] and Hespanhd [16] for instance. The case of forced juismparder to analyze, at the FPK level, because no
stochastic intensity exists for these jumps. Until regenitle only results available in the literature were dealiriiip
one-dimensional models; see Feller][L1, 12] and MalhandeGiong [2]]. These results have been extended to a
class of multi-dimensional models by Bect et E] [3].

The main contribution of this paper is general formulatidrihe FPK equation for GSHS's. It is based on the
concept ofmean jump intensitywhich conveniently substitutes for the stochastic intgnshen the latter does not
exist. This equation unifies all previously known instanoéthe FPK equation for stochastic hybrid systems, and
provides GSHS practitioners with a tool to derive the cdrezolution equation for the probability law of the state in
any given example. The results presented in this paper &nacéed from the PhD thesis of the authﬂr [2].

U A shorter version of this paper was presented at the 17th W@d Congress (IFAC'08) in Seoul, KoreE [1].
HOThe results presented in this paper come from the PhD thesie author [[2], under the supervision of Pr. Gilles Fleung ®r. Hana Baili.
Email addresses: ul i en. bect @upel ec. f r (Julien Bect)
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The paper is organized as follows. Sect@)n 2 introduces otations for the GSHS formalism, together with
various assumptions that will be needed in the sequel. (S‘E@t'defines the crucial concept of mean jump intensity,
which is used in Sectioﬂ 4 to derive our unified measure-eafoemulation of the generalized FPK equation for
GSHS'’s. SectioﬂS show that the measure-valued equatioami‘cﬁéﬂl yields an evolution equation with associated
boundary conditions in the case where a piecewise smoattsesinally, SectioﬂG concludes the paper with a series
of examples.

2. General Stochastic Hybrid Systems

From the probabilistic point of view, the object of interéstthe GSHS formalism is a continuous-time strong
Markov processY = (X;);>o0, With values in a metric spade®. It is defined on a filtered spa¢e, A, F), equipped
with a system{Px; T € EO} of probability measures off2, .4), with the property thaX starts fromz: underP,, for
all z € E°. As usual in the theory of Markov process#s;, denotes the expectation operator corresponding,to
The reader is referred tf][4,]10, 22] for background infoiarabn continuous-time Markov processes.

It is assumed that, for each € (2, the samplepath — X, (w) is right-continuous, has left limitX,;” (w) in the
completionE of EY, and has a finite number of jumps, denoted¥yyw), on the interval0;¢] for all ¢ > 0. The
last condition can be seen as a “pathwise non-Zenonessiteegent. We will denote by, the k" jump time, with
T = + oo if there is less tha# jumps.

2.1. The hybrid state space

The (completed) state-space of the model is assumed to Haylerid structure:E' = Ugeo {¢} X E4, whereQ
is a finite or countable set, and eakh is either the closure of some connected open subgetC R™ (n, > 1)
or a singleton (in which case we sef = 0). The state at time can therefore be written as a pa{t = (Q:, Z:),
whereQ; € QandZ; € Eq,. We denote byo? = {q € Q | n, = 0} the set of all “purely discrete” modes, and by
Ed = Ugeod {q} x E,4 the corresponding subset bt The usual definitions for smooth maps and vector fields exten
without difficulty to such an hybrid structure (see Apper@for details).

The state spac® is regarded as the disjoint sum of the sets ¢ € Q, and endowed with the disjoint union
topologﬂ. We denote by the Borelo-algebra, and by, the subsets of all relatively compdcE £. Moreover, we
define a “volume measure” afi by the relation

m) =Y my(TNE)+ > 6:((), TeE, (1)

qg Q4 reEd

wherem, is then,-dimensional Lebesgue measurelgnandd, the Dirac mass at. (Note thatZ, C R"s has been
tacitly identified with{q} x E, C E.)

Let 0E, be the boundary of, in IR"¢, with the convention thabFE, = @ whenn, = 0. We define the
boundaryd E of the state space by the relatiéft = U,co {q} x 9E,, and theguard setoy G = E \ EV. Itis not
required thatz = 0F.

Notations. Let u : £ — R be a (signed) measuré; : £ x £ — R akernel andp : £ — IR a measurable
function. The following notations will be used throughohetpaper, assuming the integrals exigt:K)(dy) =

[ w(dz) K (z,dy), (Ke)(x) = [ K(x,dy) ¢(y) andup = [ p(dz) o(z).

2.2. Stochastic differential equation with jumps

The processY is assumed to be driven by an Itd stochastic differentiabgiqn between its jumps: there exist
r + 1 smooth vector field§; and ar-dimensional Wiener procesgs such that, in mode € Q \ 94,

A7, = folq, Z)dt + Y fi(g, Z,) dB;. (2)
=1

lwhich is (here) locally compact, separable and completadtrizable
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In other words, for allp € C?(E), X satisfies the following generalized Itd formula

P(Xe) — p(Xo) = /0 (L) (X ds + ) /0 (f1)(Xs)dBL+ Y (e(Xr) — 0(X,)) s (3)
=1

0<1 <t

wherel is the differential generator associated wﬂh (2),i.e.

i.J

We make the following smoothness assumptions:

Assumption 1. The driftf, is of classC!, and the other vector fields, 1 <1 < r, are of classU2.

2.3. Two different kinds of jumps

We assume that there exists a Markov kerfidgtom E to E° and a measurable locally bounded functionE° —
R, such that the followingévy system identityolds for allz € E°, ¢ > 0, and for all measurable : Ex E° — R:

t
Ew{zow L X X )} E{ /0 (K@)(X] )dHS} (5)
where(K¢)(y) = [0 K(y,dy’) ¢(y,y’) andH is the predictable increasing process defined by
Ht:/ ds+ZIle€G. (6)
TR <t

The first part corresponds spontaneougimps, triggered “randomly in time” with a stochastic insép A(X;), while
the other part correspondsfrcedjumps, triggered wheX hits the guard sef.

Remark 2. The terms “spontaneous” and “forced” seem to have been ddn®ujorianu et aI.|]7]. They are closely
related to the probabilistic notions of predictability anthl inaccessibility for stopping times [see, e[g], 2uter VI,
§612-18], but we shall not discuss this point further in thipgra

Remark 3. The pair(K, H) is aLévy systenfor the processX in the sense of Walsh and Wem23, definition 6.1].
Most authors require thdf be continuous in the definition of a Lévy system, therebgltbsving predictable jumps.

3. Mean jump intensity

From now on, we assume that some initial probability Jayshas been chosen, wiihy (G) = 0 since the process
cannot start fronG. All expectations will be taken, without further mentionitiivrespect to the probability?,,, =
J bo(dz) Py

It is assumed thaE(N;) < + oc. This is a usual requirement for stochastic hybrid procflssenhich is clearly
stronger than piecewise-continuity of the samplepatrsbéing satisfied depends not only on the dynamics of the
system but also on the initial probability lgvy.

3.1. Definition and connection with the usual stochastierisity
In order to introduce the main concept of this section, ledefine a positive measufeon E x (0; +o0) by

R(A) = E{Zk>1 14 (Xm,Tk)}. (7)

For anyT" € &, the quantityR (T" x (0;¢]) is the expected number of jumps starting fréhduring the time inter-
val (0;¢]. The measure is in general unbounded, but its restrictionHox (0; t] is bounded for alt > 0 because

2See, e.9., Davis[l[8] or Bujorianu and Lygerﬂs [5].
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Definition 4. Suppose that there exists a mapping — r;, from[0; +00) to the set of all positive bounded measures
on E, such that, forall’ € &,

a) t — r(T") is measurable,
b) forallt >0, R(I x (0;1]) = [ rs(I') ds.
Thenr is called themean jump intensitgf the process( (started with the initial lawu).

Let us splitR into the sum of two measuré®’ andR“, corresponding respectively to the spontaneous and forced
jumps of the process. Then, using the Lévy system ideiittis/easy to see that a mean jump intensftyalways exist
for the spontaneous paR’: it is given by

r9(0) = B xier) = [ Ao) (o). ®)
In other words: for spontaneous jumps, a mean jump inteasitstlys exists, and it is the expectation of the stochastic
jump intensityA(X;) on the even{ X; € T'}.

Forced jumps are more problematic. The Lévy system idergtipowerless here, since no stochastic intensity
exists (because forced jumps are predictable). All hopeidast, though: a simple example will be presented in
the next subsection, proving that a mean jump intensity &&t anyway. This is fortunate, since the existence of a
mean jump intensity will be an essential ingredient for owifiad formulation of the generalized FPK equation. See
subsectiofi 6]2 for further details on that issue.

3.2. Whereuy comes into play: an illustrative example

Consider the following hybrid dynamics dii= [0; 1]: the stateX; moves to the right at constant speed- 0 as
long as itis inE® = [0; 1), and jumps instantaneously @icas soon as it hits the guafd = {1} (i.e., the reset kernel
is such that{ (1, - ) = o).

If we takeuo = do for the initial law, then the process jumps frdnto 0 each time is a multiple ofl /v, i.e. 7, =
k/vandX_ = 1almostsurely. There is therefore no mean jump intensithigdase, sinc&® = >, -, 31, x/v)-

Now takey to be the uniform probability of0; 1] (which is, incidentally, the only stationary probabiligw of
the process). Then

! —z
R(F X (O;t]) = 6 (1) /0 arginlax{k ” < t} dz 9)
1 >
= 01(T) / [vt + 2] dx (10)
0
= vt (1), (11)

where [vt + x| is the smaller integer greater or equahto+ z. Therefore the mean jump intensity exists in this
case, and is equal t0d; (it is of course time-independent, singgis stationary). In particular, the global mean jump
intensity isr;(E) = v.

4. Generalized FPK equation

4.1. A weak form of the FPK equation
Taking expectations if](3), the followingeneralized Dynkin formulés obtained: for all compactly supported
¢ € C*(E) and allt > 0,

E{o(X:) — p(Xo)} = E{/O (Lw)(Xs)dS}vLE{ > sa(Xm)@(Xm)}- (12)

0<7 <t

Let us assume the existence of a mean jump intensiy all times. ThelﬂZ) can be rewritten as

(MMWEA%@@@+ATN(1M®, (13)
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wherey, is the law ofX; andI is the “identity kernel” onF, i.e. the kernel defined bi(y, dy’) = d,(dy’). Formally
differentiating [2) yields
py = Lpe +re(K — 1), (14)

wheret — p; is the time derivative of — p; (in a sense to be specified later), ahtithe “distributional adjoint”
of L (see AppendiﬂB for a rigorous definition).

Equation ) begins like the usual Fokker-Planck equdboniffusion processegy = L* ) and ends with an
additional term that accounts for the jumps of the process.

Definition 5. We will say thatt — . is a solution in the weak sense of theneralized FPK equatiofor the GSHS
if

a) there exists a mean jump intensity- r;,

b) there exists a mapping+— p}, from [0; +00) to the spaceM.(F) of all Radon measures off, such that
t — u:(T") is absolutely continuous with a.e.-derivative- p(T), forallT € &,

c) L*u. is a Radon measure for &l 0,

d) equation[(14) holds as an equality between Radon measieres;(I') = (L*11)(T') + r¢(K — I)(T") for all
t>0andalll € &..

Such a weak form of the FPK equation is the price to pay for &athtreatment of both kind of jumps. Condi-
tions[5.4 andl 5l b can be seen as smoothness requirementssyititt to the time variable, ahd]5.c with respect to the
space variables.

4.2. "Physical” interpretation

The usual FPK equation admits a well-known physical intetigitfon as a conservation equation for the “probability
mass” [see, e.g[, [L3]. Indeed, assuming the existence obathrpdfp € C2!(E x Ry), the equations;, = L*
can be rewritten as a conservation equatipyy 9t + div(j,) = 0, with theprobability currentj, defined by

. . 1 o(at . L
Ji="fope —5 zj: (aszt) , a¥ = ;fﬁf{ : (15)
The additional “jump term”, in the generalized FPK equatiaamits a nice physical interpretation as well. To see
this, let us rewrite it as the difference of two bounded pesitmeasurer,(K — I) = r§* — r,, wherer§™® = r K.
Thereforer, andr;"™ behave respectively assink and asourcein the generalized FPK equation: for edche &,
r+(T") dt is the probability mass leaving the détduring d¢, because of the jumps of the process, whité(T") d¢ is
the probability mass enteriig
These two measures are in fact connected by the reset k&raeldy). In particular, the relatiom;(E) =
ri"(E) holds at all timeg > 0, ensuring that the total probability mass is conserved. edeer, introducing the
measuresV;(dz,dy) = r(dz)K (z,dy), we haver, = [W (-, dz), r§** = [ W(dz,-) and the generalized FPK
equation can be rewritten more symmetrically as

b= Dt [ (Wildo,) = Wit da)) (16)

It appears clearly, under this form, as a generalizatiomettfferential Chapman-Kolmogorov formut# Gardiner
[E, equation 3.4.22] — which only allows spontaneous jumps

4.3. Sufficient conditions for the existence of a weak smiuti

The main result of this paper show that the various requirgenef definitionb are not independent. We denote
by |v| the total variation measure of a Radon measyrehich is finite onf.. We shall say that a functioh— v,
from [0; 00) to M (FE) is right-continuous (resp. locally integrable)tis— ;¢ is right-continuous (resp. locally
integrable) for all bounded measurable £ — R.
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Theorem 6. Consider the following assumptions:
a) there exists a mean jump intensftt@), such that — r; is right-continuous,
b) ¢+ u, is differentiable in the sense pf B~ 4, is right-continuous and — || locally integrable,
c) L*u, is a Radon measure for all> 0 (E),t — L*u, is right-continuous and — | L* .| is locally integrable.

If any two of these assumptions hold, then the third holdselsamd ¢ — p, is a solution in the weak sense of the
generalized FPK equation.

The proof of this theorem is given in Appencﬂ< C. We will nog to give general conditions under which as-
sumptiond 6]d=6.c are satisfied, since such conditionsdrinatitably be, in the general setting of this paper, very
complicated (involving the initial law:, the vector fieldg of the stochastic differential equation, the geometry of
the state spacE and the reset kerné{).

5. The case when a piecewise smooth pdf exists

Equation [1}4) is an evolution equation for the measureadfunctiont — ;. In many situations of practical
interest, the measures admit a pdfp,, with respect to the volume measuneon E. In this section we show that, if
the functionp : (z,t) — p:(z) is — at least piecewise — smooth, then equatEh (14) simettasly gives birth to an
evolution equation fot — p, and to static relations that hold for alP> 0 (so-called “boundary conditions”, although
the name is not entirely appropriate here).

5.1. Assumptions about the guard and the boundary

Turning equation[(34) into an evolution equation for the piithately boils down to playing with “integration by
parts” formulas, for judiciously chosen test functions.dfibso, we shall need additional assumptions concerning the
topological regularity of the guard set and the smoothnégsedoundary.

Assumption 7. The guard seG is a regular closed subset 6fF (i.e., G is a closed set and it is equal to the closure
of its interior in OF).

Assumption 8. For eachq € Q such thatr, > 2, the domaing, is C2-manifold with corners.

Assumptior[B is sufficient for the divergence theorem to h&lde Lee[[119, chapter 14] for basic definitions and
results concerning manifolds with corners. We denote pyhe surface measure @i¥,, and define the surface

measure on JF by
s= Y S+ > Y, O (17)

qeQ q€EQ xC€IE,
ng>2 ng=1

We further denote bw the outward-pointing unit normal vector @, which is well-definedi-almost everywhere
on JE. Since the procesX is allowed to start o@FE \ G, which is a subset of° (see Sectioﬂ 2), the vector fields
have to satisfy the following conditions (on the smooth gad E \ G, hences-almost everywhere):

(fo,n) <0, and (f,n)=0,1<I<r. (18)

Otherwise, for anyq, «) € OF\ G, the solution of equatior[|(2) would leave the domain “insaaeously” (i.e. almost
surely in any time neighborhood 0j.

5.2. Connecting the mean intensity of forced jumps with tbbability current (local result)

Let GV denote the subset of the guard é&tvhere at least one of the “noise” vector fields is not tangernhe
boundary, i.e.G° = {z € G, 3l € {1,...,7}, (f;,n) # 0}. The following results relates the mean intensity of
forced jumps with the probability currejjtdefined by equatiod]lS).

Proposition 9. Assume that the measuresadmit a pdfp; = p( -, t) for all t > 0 on some open subsEtC E, with
p € C?*1(U x Ry). Define the outward probability currepf®® = (j,,n) onU N G. Then, for allt > 0,
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a) jo't > 0andrf(T) = [ j"* ds is the mean intensity of forced jumpsBm G,
b) the pdfp; vanishes o/ N G°.

See Appendiﬂ) for the proof. This proposition provides twgportant conclusions concerning forced jumps.
The first one is that, when a smooth pdf exists in a neighbatlodthe guard set, the mean intensity of forced jumps
(which appears in the FPK equation) is equal to the outwawd @ibthe probability current. This is consistent with
the physical interpretation of the probability currejjids d¢ is the probability mass (“number of particles”) escaping
from the domain througts duringdt.

The second conclusion is that the familiar “absorbing b@uytconditionp; = 0 holds on the guard set as soon
as one of the “noise” vector fields is active in the normaldimn. Note that the pdf does not vanish on the boundary
in example of subsecti.Z, which is a piecewise detestiinprocess with forced jumps.

5.3. Evolution equation for the pdf and “boundary” conditi®(global result)

The local result of subsectidn p.2 will now be used to obtagieaeral formulation of the FPK equatidn](14) in
terms of a probability density function, when one exists @nsimooth enough. Lel ¢ E° \ E9 be a closed set
of m-measure zero — typically will be a closed hypersurface in applications. Note thiat £ \ H is an open
neighborhood of the boundaf)#. Assume now that the following holds:

Assumption 10. a) u; admits a pdf,; with respect tan, on the whole state space, for alt> 0,
b) p € C>! (U x Ry), with 22 and Fp locally integrable on& x R .
Then the divergence theorem, together with condifioh (b8)@ropositior] 9)b, yield that (see Appen(ijx B)

(L u)p = /Fptgoder/ o pds, (29)
E OE

forall o € C2(U), whereF is the formal adjoint of, i.e., the differential operator defined by

_ 0 (fé(p) 1 9% (a¥p)
Fivm =2 =50 * 32 g (20)

% %,J

The (possible) lack of differentiability gf; on H therefore translates into the fact that the Radon meaglires

B(T) = / Fp;dm + / o ds — (L*u) (T). (21)
r OENT
do not vanish in general. This, in turn, is closely relatedht® existence of a non-vanishingsingular part in the
source term§*¢ = r, K, as stated by the following result.

Theorem 11. Let Assumptiofi 10 hold. Then the conditigng p.3—6.c of Emefl are satisfied, and the following
evolution equation holds of° \ H, for all t > 0:
9
ot

d(rK)

= F
Pt + am

—Ap:- (22)
Moreover, according to Propositicﬁh 9,

a) 17 (L) = [pnq Jot ds is the mean intensity of forced jumps,

b) and the absorbing boundary conditign,= 0, holds onG®°

Finally, them-singular part(r, K)* of r, K is supported by the séf U (OF \ G) and satisfies the following “conser-
vation equations”:

C) (’I"tK)J‘ = ﬁt >00nH,
d) (nK)*=—[ jotds >00ndFE \G.
See AppendiﬂE for the proof.



J. Bect/ Nonlinear Analysis: Hybrid Systems / Draft, Jaryu@r2009 Page 8 /E]s

6. Examples

6.1. A class of models with spontaneous jumps

Ouir first series of examples covers a large family of modelbauit forced jumps® = @). The reset kernek is
assumed to satisfy the following assumption:

Assumption 12. There exists a kerndt™* on E such that
m(dz) K(z,dy) = m(dy) K*(y,dz) . (23)

(We donotassume thak* is a Markov kernel, i.e. thak™*(y, ) is a probability measure.) The following result is an
easy consequence of TheorEm 6:

Corollary 13. If there exists a pdp € C?!(E x R.), then the measures andr$™ are absolutely continuous with
respect tam,
dry drre

= A = K*(\ 24
dm Dt dm ( pt)a ( )

and the following evolution equation holds:

0 .
% = L'ps + K" (Apt) — Aps. (25)

Assumptiormz holds for several classes of models knowreifitérature: pure jump processes with an absolutely
continuous reset kernel, the switching diffusions of Ghetsl. [L$,[1}] and also the SHS of Hespanfha [16].

Example 14. Pure jump processes occur when= 0, i.e. when there is no continuous dynamics. We consider here
the case wher&’ is absolutely continuousk (x,dy) = k(z,y) m(dy). For instance, if the amplitude of the jumps
is independent of the pre-jump state and distributed thepptifenk(z,y) = p(y — z). In this case Assumptiop L2
holds with K*(z, dy) = k(y,x) m(dy). Introducing the functiory(x,y) = A(z)k(x, ), equatiod 25 turns into the
well-knownmaster equatioffL3, eq. 3.5.2]:

%(y,t) = /.(v(w,y)p(w,t)*v(y,x)p(y,t))m(dx)- (26)

In particular, when all modes are purely discretg & 0), this is just the usual forward Kolmogorov equation for a
continuous-time Markov chain.

Example 15. In the case of switching diffusions, the state space is ofdha £ = Q x R™ (with Q a countable set
andn > 1) and the reset kernel of the form

K((0.2).) = > mag(2) g1 - (27)
q'#q
wheren(z) = (m,y (2)) is a stochastic matrix for all € R, Assumptior] 412 is fulfilled withi * defined by
K*((Qa Z)a ) = Z Tr‘l"](’z) 6(‘1’72) : (28)
q'#q

Equation becomes in this case the familiar generalizéddefiation for switching diffusion processes [see, e.g.,
fL7.[18]: for allz = (¢,z) € E andt > 0,

L t) = (Lp)@) + 3 M)l 2) = A& pela) (29
q'#q

wherely,(z) = M, 2) mgq(2).
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Example 16. The SHS of HespanhﬂlG] are also defined®r= Q x R, but this time the post-jump stafe,, is
determined by applying a reset mép: £ — E° to the pre-jump staté(~ , ¥ being chosen randomly in a finite of
reset map¥ ;. The reset kernel can therefore be written as

K(z,) =Y m(x) 6y, () » (30)
k

with 7y, () the probability of choosing the reset mép given thatX ~ = . Provided that the functiony, are local
C'-diffeomorphisms, the kerndt fulfills Assumption[ 1 with

@)=Y Y m@) |k 6, (31)
k' yewt({z})

where Ji(y) is the Jacobian determinant &f, aty. Therefore, introducing a stochastic intensiy = \ g, for
each one of the reset maps, we recover thanks to Cor@hﬂyel@emeralized FPK equation given by Hespa [16,
p. 1364]:

Gt = )+ > (2w - epote) @2)

6.2. A class of models with forced jumps

The measure-valued formulation of the generalized FPthmm@) paves the way for an easier proof of some
recent results[[3], concerning GSHS with forced jumps arndrdanistic resets. A typical example of this class of
process is the thermostat model of Malhamé and ChEr}g [20Ehhas been extended to several dimensionﬁ in [3].
We consider the class of GSHS models satisfying the follgwissumptions.

Assumption 17. a) The model only has forced jumps € 0) with deterministic resets, i.e. there exists a map
¥ : G — E"suchthatK (z, - ) = 0y, forallz € G.

b) All modes have the same dimensign= n, the guard set is the whole boundarfy & JFE) and is of clasg”!
(in particular, it has no corners).

c) H = ¥(G) is aC! hypersurface, closed iy, and ¥ is a C'*-diffeomorphism frond: to H.

The assumption tha# = OF is only here for the sake of simplicity and could easily bexed. Boundaries with
corners and piecewise smooth reset maps could be considenedll. The model considered iﬂ [3] also includes
purely discrete modes (i.e1, € {0,n} for eachq € Q), which cause no real additional difficulty.

The measur& (z, - ) is supported by for all -, which implies that the source terK is also supported bj7,
hence ism-singular. Therefore, even if the diffusion is non-degate(i.e. the diffusion matrixa®) is uniformly
positive definite), we know from subsecti@S.S that the pdivill not be smooth onHf. Accordingly, we make the
following smoothness assumption for the measures

Assumption 18.  a) u; admits a pdp; with respect tan on the whole state space, for al> 0,
b) pe C*1((E\ H) x Ry), ps andVp, have at most a jump discontinuity (discontinuity of the fiiatl) onH .

Then Assumptior[jro hold, which allows Proposit@ 11 to bplied. In particular, easy computations with the
divergence theorem (similar to those in Apperldix B) yielatttior allp € C?(E),

* . -ou -in 1 - . a
(L Nt)%ﬁ = / Fpt (pdm =+ /Gjt tgpdg — / Jt gads — 5 E / flgﬁ (fl,nab> (pgfpt) dSH, (33)
E H =1 Y H

wheren,; is the unit normal vector off oriented from side to sideb and;i* = <j§b) fjga), nab>. The superscripts

a/bindicate the value of a discontinuous function on the cgwesling side off (but none of these quantities actually
depend on the chosen labelling of the sides). The last tertheoright-hand side vanishes, becaligg; is a Radon
measure by Theorefh 6. Therefopejs continuous orff and the measure$ of Theoren{ 1}l are given by

Bu(T) = /H s, (34)

The conclusions of propositill can then be summarizedliasvk:
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A.

a) The usual Fokker-Planck equatidm, /0t = Fp;, holds on each component&f \ H.
b) The conservation probability current through the resap s ensured by the relation

-out d(5H0W>

gt = S22 o, (35)

wheres; o U is the pushforward (image measurekgf by ¥ 1.

c) The absorbing boundary conditign,= 0, holds onG°.
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Smooth maps and vector fields orE

The following definitions are natural extensions to the ylstate spacé” of the usual definition on subsets

of R™.

Amapy : E — R is said to bek-times continuously differentiable off — in short,p € C*(E) — if p, =

©(q, -)is C* on E, in the usual sense for afle Q \ Q4, i.e. if there is an open substof R™« such thatz, C U
andy extends to @'* map onU.
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A vector fieldg on FE is defined as a first order differential operator with respet¢he continuous variables. Its
action on a continuously differentiable functipne C'*(E) will be denoted by, where

S gi(q,2) 9% (q,2) onE\ EY,

36
gp=0 onE4. (36)

(g8p)(g,2) = {

The number of “components” @ depends on the mode To simplify the notations, we shall agree that the indexes
andj always correspond to summations on the number of continvamiesbles, and drop the explicit dependence.on
For instance, the definition @fp on £ \ E< can be rewritten agy = Y, g’ gﬁ. A vector field is said to bé-times
continuously differentiable o if g’(g, - ) is C* on E, in the usual sense for ajle 9\ Q¢ andalli € {1,...,n,}.

B. The operator L*

The operatoL* introduced in Sectiof] 4 is defined over the 44t (£) of all Radon measures dias the “adjoint”
of the differential generatat (see equatior[k4)):

(L) () = v(Ly) = [E (L)) v(dz), Ve CE). (37)

As a consequence of Assumptiﬂn 1, the res&iilt of applyingL* to a Radon measuteis, in general, a second order
distribution. It is important to note that, because thesstpiacer has a boundar§ E, the operator* is not a simple
second order partial differential operator — it also inésitboundary terms”.

Under Assumptioﬁl& the following version of the divergetimmrem — which is a multidimensional generalization
of the “integration by parts” formula — is the key tool to cont@* v for Radon measures with a smooth density.

Theorem 19(see, e.g.,|ﬂ9]) Let Assumptioﬂ 8. Then, for all compactly suppoKt&dvector fieldf on £,

/E div(f) dm — /6 {£n) ds. (38)

LetU be an open subset &f. Assume that; has a smooth densipy onU. Simple manipulations of equatiorﬂs (4)
and (Ib) yield that

. 1 .
Lope=jwp+ 5 ;dw (Frppi 1) - (39)
Moreover, using the product rule for the divergence operato

iy = diV(‘Pjt) - ¢ diV(jt) = diV(SQit) + o Fpy, (40)

whereF is the Fokker-Planck operator as in Sectjor] 5.3. Therefesiag the divergence theorem to compute the
integral of the divergence terms ih [39) afd (40), we get:

-Ou 1
(L") () = /prtdm = /sDFptdm+/ ©jg"t ds + 3 > / fiop: (f1,m) ds. (41)
E E OF 1 oOF

C. Proof of Theorem[$

Let C2(E) denote the set of all compactly supportect C?(E). The following lemma is an easy consequence
of the smoothness of the vector fields:

Lemma 20. For all ¢ € C%*(E), t — f()t(L*uS)(gD) ds is differentiable on the right, with the right continuous
derivativet — (L* 1) ().
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In the sequel, “right continuous” is abbreviated as “rc”.

o Assume that both §.a afid p.b hold. Then each terrh bf (13) hakeevative on the right. Differentiating both
sides proves thaml4) holds for al>> 0, hence that.*u; is a Radon measure and thtat- L*p, is rc. Moreover,
integrating the inequalityL* | < |u}| 4+ 2r; yields that, for alll’ € &,

[zl @ds < [l ) ds + 2 BN} < oo, (42)
0 0

Thereforet — |L* | is locally integrable, which provgs b.c.
o Assume now thdt f.aarid b.chold, andiget= L* i, + (K — I), for all ¢ > 0. Clearly,y, is a Radon measure,
t — uyisrcand

t
/Hg@:(ﬂt*lﬁo)@a Vt>0, VoeCIE). (43)
0

Moreover, for alll’ € &,

t t
[ myds < 20 @) ds 42BN} < oo, (44)
0 0

which shows that — || is locally integrable. Therefore, using standard appreiom techniques and a monotone
class argument, it can be proved t@ (43) still holdsdet 1, T € &, i.e. thatt — u; is the “derivative” oft +—

in the sense of definiti .b.
o Finally, assume that §.b afd]6.c hold. Then, foratt C2(E), equation[(J3) can be rewritten as

// o(x) (RG(dx,ds) — (L*us)(dx)ds) = // o(x) ((RGK)(dx,ds) —fs(dz)ds) , (45)
]

G x]0;t E©°x]0;t]

where¢, = ) — (L*ps) (E°N - ) — (K —I). The measureB“ andr® have been defined in subsectjor] 3.1. Clearly,
& € M (E) andt — & is locally integrable. Using once more standard approxonaechniques, one can prove
that ) still holds whe = 1, with I" a compact subset @f. In this case the right-hand side vanishes, yielding

t

ROMX0:) = [ (L0 ds. (46)
0

Moreover, since — R%(I'x]0;t]) is increasing and + (L*u;)(T) is rc, we have(L*;)(T') > 0 for all t > 0.

This allows to extendES) to all € &, using a monotone class argument, thus proving the exisigine mean jump

intensityry” = (L*us)(G N -) for the forced jumps.

D. Proof of Proposition[d

Sincep is of classC>! onU x R, it is easily seen that the assertidng 6.b nd 6.c holtf otusing the same
arguments as in the proof of Theor§jn 6, it follows fhdt 6.athedyeneralized FPK equation hold &ras well.

LetV = (OF)gmootn U, Where(9F ) g0 denote the smooth part of the boundaryis an open subset 6fE.
For eachy) € C%(V), there exists a sequence of functians € C?(U), with their support in a fixed compact set,
such thatp,, = 0 anddy,,/On = n onV, andy,, — 0 uniformly. Equation@l) holds for each Taking limits
with respect ton on both sides, and using the fact that 11;) (¢,,) — 0 (sinceL*, is a Radon measure dn), we
findthat, [, np: (fi, n)” ds = 0. Thereforez — p(z, t) >, n)” vanishes-almost everywhere ol, hence
everywhere o@ E by continuity. This proves assertipn]9.b sinee (f;, n)2 > 0onGv.

Using {41) and 9]b, the Radon measiifg:; can be rewritten as

(L*p) () = / Fpydm + / Jotds 47)
r OENT
forallT" € & such thaf® c U, and the generalized FPK equati(14)[bmlow reads as follows:
p0) = [ Fpcm s [ gpds (e - (), (48)
r OENT

Identifying the terms that are supported®y1 U yieldsr{ (TN U) = [;,, j¢*"ds forall ' € &.. Thereforejp"® is
positives-almost everywhere ohi N U, hence everywhere by continuity. This proves assen 9.a
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E. Proof of Theorem[1]

The assumptio@.b of Theoreﬁh 6 holds withT") = | %, since% existsm-almost everywhere and is locally
bounded. Moreover, as in the proof of Proposifipn 9, theterize ofr& onG N U = G follows from the fact thaf 6]b
and[6.F hold ori/. We have thus proved that the assumptiprs 6.a (existeng¢ ahd[6.p of Theorerf] 6 (existence
of /) hold on the whole state space, which implies t 6.c andéneralized FPK equatiom14) hold as well.

As a consequence of equati(47), we have

(L) (CAU) = /

Fp,dm + / o ds = /Fpt dm + / jotds (49)
rou r

OENI'NU OENI"

forall T € &, sincem(E c U) = 0 anddFE C U. Equation [2]1) thus simplifies inté,(T') = — (L*u;) (T N H),
which proves that the measurgsare supported byi.
According to ), the generalized FPK equati@ (14) candmothposed as

@) = /F Fpydm + /a - jo%ds + (L*ue) (DN H) + ro(K — I)(T). (50)

Unicity of the Radon-Nikodym decomposition (with respexti) yields the following pair of equations:

% = Fp + Lgi{) — Apt, (51)
0 = . ij“tds + (L*pe) TN H) + (rK) (D) — (rf) (1), (52)

where we have used that) = A\du,. The first equation is preciselﬂZZ), and the second onéssiplio
(respectively 11]d) by considering the terms that are suppdy H (respectiveldE \ G).



