D. Ackley, A Connectionist Machine for Genetic Hill-climbing, 1987.
DOI : 10.1007/978-1-4613-1997-9

R. Barton, Minimization Algorithms for Functions with Random Noise, American Journal of Mathematical and Management Sciences, vol.4, issue.1-2, pp.109-138, 1984.
DOI : 10.1080/01966324.1984.10737139

F. Branin, Widely Convergent Method for Finding Multiple Solutions of Simultaneous Nonlinear Equations, IBM Journal of Research and Development, vol.16, issue.5, 1972.
DOI : 10.1147/rd.165.0504

J. Chilès and P. Delfiner, Geostatistics, Modeling Spatial Uncertainty, 1999.

T. M. Cover and A. J. Thomas, Elements of Information Theory, 1991.

D. Geman and B. Jedynak, An active testing model for tracking roads in satellite images, Institut National de Recherche en Informatique et en Automatique (INRIA), 1995.
DOI : 10.1109/34.476006

URL : https://hal.archives-ouvertes.fr/inria-00073935

J. Hartman, Some experiments in global optimization, Naval Research Logistics Quarterly, vol.7, issue.3, pp.569-576, 1973.
DOI : 10.1002/nav.3800200316

D. Huang, T. Allen, W. Notz, and N. Zeng, Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models, Journal of Global Optimization, vol.25, issue.1, pp.441-466, 2006.
DOI : 10.1007/s10898-005-2454-3

D. Jones, A taxonomy of global optimization methods based on response surfaces, Journal of Global Optimization, vol.21, issue.4, pp.345-383, 2001.
DOI : 10.1023/A:1012771025575

D. Jones, M. Schonlau, and J. William, Efficient global optimization of expensive black-box functions, Journal of Global Optimization, vol.13, issue.4, pp.455-492, 1998.
DOI : 10.1023/A:1008306431147

J. Knowles, ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems, IEEE Transactions on Evolutionary Computation, vol.10, issue.1, pp.100-116, 2003.
DOI : 10.1109/TEVC.2005.851274

J. Knowles, L. Thiele, and E. Zitzler, A tutorial on the performance assessment of stochastive multiobjective optimizers, Tech. Rep, vol.214, 2006.

J. Lumley, Engines: An Introduction, 1999.
DOI : 10.1017/CBO9781139175135

J. Mockus, Bayesian Approach to Global Optimization: Theory and Applications, 1989.

R. Myers and D. Montgomery, Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 2002.

C. Perttunen, A computational geometric approach to feasible region division in constrained global optimization, Conference Proceedings 1991 IEEE International Conference on Systems, Man, and Cybernetics, 1991.
DOI : 10.1109/ICSMC.1991.169748

M. Sasena, P. Papalambros, and P. Goovaerts, Exploration of Metamodeling Sampling Criteria for Constrained Global Optimization, Engineering Optimization, vol.34, issue.3, pp.263-278, 2002.
DOI : 10.1080/03052150211751

M. Stein, Interpolation of Spatial Data: Some Theory for Kriging, 1999.
DOI : 10.1007/978-1-4612-1494-6

E. Vazquez and É. Walter, Estimating derivatives and integrals with Kriging, Proceedings of the 44th IEEE Conference on Decision and Control, pp.8156-8161, 2005.
DOI : 10.1109/CDC.2005.1583482

URL : https://hal.archives-ouvertes.fr/hal-00369893

J. Villemonteix, E. Vazquez, and É. Walter, An informational approach to the global optimization of expensive-to-evaluate functions, Journal of Global Optimization, vol.10, issue.5, 2006.
DOI : 10.1007/s10898-008-9354-2

URL : https://hal.archives-ouvertes.fr/hal-00354262

G. Wahba, Support vector machines, reproducing kernel Hilbert spaces, and randomized GACV, Advances in Kernel Methods -Support Vector Learning, pp.69-87, 1998.

B. Williams, T. Santner, and W. Notz, Sequential design of computer experiments to minimize integrated response functions, Stat. Sinica, vol.10, pp.1133-1152, 2000.

A. Yaglom, Correlation Theory of Stationary and Related Random Functions I: Basic Results. Springer Series in Statistics, 1986.