A sequential Bayesian algorithm to estimate a probability of failure

Abstract : This paper deals with the problem of estimating the probability of failure of a system, in the challenging case where only an expensive-to-simulate model is available. In this context, the budget for simulations is usually severely limited and therefore classical Monte~Carlo methods ought to be avoided. We present a new strategy to address this problem, in the framework of sequential Bayesian planning. The method uses kriging to compute an approximation of the probability of failure, and selects the next simulation to be conducted so as to reduce the mean square error of estimation. By way of illustration, we estimate the probability of failure of a control strategy in the presence of uncertainty about the parameters of the plant.
Type de document :
Communication dans un congrès
15th IFAC Symposium on System Identification, SYSID 2009, Jul 2009, Saint-Malo, France. 5 p., 2009
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal-supelec.archives-ouvertes.fr/hal-00368158
Contributeur : Emmanuel Vazquez <>
Soumis le : jeudi 26 mars 2009 - 15:24:28
Dernière modification le : jeudi 29 mars 2018 - 11:06:05
Document(s) archivé(s) le : mercredi 22 septembre 2010 - 11:46:19

Fichier

sysid09_EVJB.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00368158, version 2

Collections

Citation

Emmanuel Vazquez, Julien Bect. A sequential Bayesian algorithm to estimate a probability of failure. 15th IFAC Symposium on System Identification, SYSID 2009, Jul 2009, Saint-Malo, France. 5 p., 2009. 〈hal-00368158v2〉

Partager

Métriques

Consultations de la notice

451

Téléchargements de fichiers

244