N

N

Deployment Analysis of cooperative OFDM base
stations

He Gaoning, Hamidou Tembine, Merouane Debbah

» To cite this version:

He Gaoning, Hamidou Tembine, Merouane Debbah. Deployment Analysis of cooperative OFDM base
stations. IEEE International Conference on Game Theory for Networks, May 2009, Istanbul, Turkey.
9 p. hal-00392320

HAL Id: hal-00392320
https://centralesupelec.hal.science/hal-00392320
Submitted on 7 Jun 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://centralesupelec.hal.science/hal-00392320
https://hal.archives-ouvertes.fr

Deployment Analysis of cooperative OFDM base stations

Gaoning He, Hamidou Tembine andékbuane Debbah

Abstract— We study the resource allocation problem in Or- it can be shown that this kind of problem is NP-hard [10]
thogonal Frequency Division Multiplexing (OFDM) systems as and often difficult to solve efficiently for an exact global
a cooperative game. The goal is to maximize the overall system o yimym. Some efforts have been made in this direction
rate considering faimess metrics among users. We propose to achieve a reasonable trade-off between the global per-
Nash bargaining solution (NBS) as a tool that achieves point(s) ) . -
on the Pareto frontier of the game theoretical rate region formance and the computational complexity, as in [11]. As a
under asymmetric conditions. Moreover, we provide a practical matter of fact, the major problem for the centralized apphoa
stochastic algorithm that can converge to one of the fairness js that the system requires a central computing resourde wit
points on the Pareto boundary. The numerical results show ompleteand probablyperfect knowledge of the channel
that the NBS not only maintains fair resource allocation for all . : . .
users, but also provides a desirable spectral efficiency for the state mfgrmgﬂon (CSI), involving fgedback _and overhead
OFDM system. communication whose load scales linearly with the number
of transmitters and receivers in the network. Due to fading
| INTRODUGTION and high mobiIity, it becomes computationally expensive fo

many current wireless systems to track the complete and

There has been a recent interest in small cells [1] whefgerfect CSI. Some other efforts have been made to find a
people can access Internet over many “mini” base statioRgyisfying trade-off between the global performance ard th
(hot-spots). Typically in such a wireless network, multi-feedhack load while maintaining a reasonable computationa
ple “mini” base stations are settled to cover a small aregmplexity, e.g. communication with partial feedback [12]
(e.g. airports, restaurants, military bases, hotels, it&Sp However, the performance of centralized approaches is ofte
libraries, supermarkets, etc.). In this paper, we assure tmited by the condition of communication environment and
these base stations are communicating simultaneously0 Sgye scaling laws.
eral receivers using OFDM (Orthogonal Frequency Division very different from centralized approaches, decentrellize
Multiplexing) over a number of dedicated sub-channels. Bpproaches aim to share the global computing and operating
is well known that aniV-carrier OFDM system [2] uSINg tasks to every entity in the network without setting an
a cyclic prefix or zero-padding [3], [4] to prevent inter-grganized center or authority. In this respect, game theory
block interference is equivalent in the frequency domain 193] has been considered as a powerful mathematical tool to
N flat fading parallel transmission channels. This enables g alyze “optimal solution” in the competitive and coopera-
power allocation on a carrier basis. In such an interferenc@ye environments.
limited multiuser communication environment, power cohtr  \when the hot-spots belong to different network providers,
becomes a central issue in the system design, since eafdh.cooperative games appear to be a natural setting for
user's performance depends not only on its own ransmMygodeling the competition between providers in such net-
power, but also on the transmit power of all the other user§orks. The central question here is whether a Nash equi-

In general, there are two ways to study the power aliprium (NE) exists (or under which conditions NE exists),
location problem depending on the system settings, i.@ng if so, whether the system operates efficiently at the
centralized approaches and decentralized approaches.  NE. One of the earliest contributions in this direction is

In centralized approaches, the problem (thanks to a centigk work of Yu et. al [14]. With a simplified two-user
scheduler) is considered as a global optimization problefferference channel model, they show that the existende an
in order to maximize the overall achievable sum-rate (cofyniqueness of Nash equilibrium is satisfied only under gerta
responding to the Shannon capacity [5] when single usgpnditions (depending on the channel crosstalk matrixg Th
detecting is applied). From a single user point of view, BiVejterative water-filling (IWF) algorithm is proposed to find
other users’ states and power allocation strategies, it is g approximate solution by splitting the original problem
classical convex optimization problem [6], whose solu®n jnto several convex sub-problems, then iterating over them
given by “water-filling” [7], [8], [9]. The multi-user versin  \\wE js amenable to practical implementation without the
of this problem is a non-convex optimization problem wher@eeq for a centralized control. As a multiuser extensio@] [1
there may exist multiple local optimal points. Unforturigte shows that for arbitrary symmetric interference environtae

G. He is with Telecom ParisTech, 75013 Paris, France.@Nd for certain asymmetric channel conditions, IWF can
gaoni ng. he@mai | . com converge to a competitive NE. A more general extension on
hak:ﬁ L%”&bi?% r'fbl""r']tg é’ﬂ}i‘i’e\fig’v?fgﬁ‘g%r‘c}”é 84911 Avignon, F@  the channel gain matrix has been made in [17]. It shows that

M. Debbah is with SUPELEC, 91193 Gif-sur-Yvette, France.@ Unique NE almost surely exists, if the channel gain matrix
mer ouane. debbah@upel ec. fr is assumed to be “random”. Fortunately this assumption



is usually valid for wireless channels, due to independent BS 1 BS2 BS M

fadings. However, sustained by numerical results, [17{ssho A A """" A
that the inefficiency of non-cooperative game approaches ca 4

be significant comparing to the centralized approache&-esp /
cially when the number of transmitters increases. Moreover <

the performance unbalance between users can be a serious /

problem, since there is absolutely no control on the fagnes (- ® -

issue. Similar results can be found in [11], where the asthor MT 1 MT 2 MT N

show that the performance of IWF can be improved by
up to 380% in their centralized approach. Obviously the
efficiency of “competitive optimality” is not so inspiring
from an engineering point of view.

However, in many practical applications, the hot-spots be-
long to the same network provider. In this situation, prevel
may prefer a full cooperation of the hot-spots with limited Fig. 1. The multi-user multi-carrier channel model
signalings (due to the lack of a backbone infrastructure) in
order to obtain cooperative gains and further improve the
performance from NE. Therefore, it is natural to extend thas shown in Fig. 1. For wireless communication systems,
framework of non-cooperative games to cooperative gamegpically we assume that the sub-channels have slow-fading
In this paper, we take into consideration the concept of th&o that the channel fading coefficients are constant duhieg t
NBS, as it provides a fair operation point for cooperativgperiod of each OFDM frame. Within a given OFDM frame,
communication systems. The NBS is a standard tool ilet G € RY*" be the channel gain matrix where the, n)
cooperative game theory, and is applied widely in networkntry of G is denoted ag,, ,,, the magnitude-squared of the
resource allocation. For example, in [18], a criterion basefading channel gain for the downlink channel from thé"
on NBS is applied to orthogonal frequency division multiple base station (BS) to the!* MT. G can be modeled as a
access (OFDMA) networks. This method generalizes thendom matrix chosen from a jointly Rayleigh distribution.
proportional fairness and increases the efficiency of thé/e also assume that each MT decodes the information from
system. In [19], the ideas of max-min fairness, proportionaach BS using single user detector, i.e. when Mdletects
fairness and NBS have been applied to the Gaussian multi& m’s signal, it treats the signals from other base stations
access channel (MAC) and the Gaussian broadcast chanaslnoise. Therefore, the signal to interference plus naise r
(BC). Algorithms have been designed to locate the fair poiSINR) from BSm to MT n is defined as
in the capacity region. In [20], cooperative game is used to Gm.nPm.n
provide preferred points on the boundary of the achievable Tmn = 23 T Z/- GinDim Vm Vn 1)
rate region for a simplé x 2 interference channel. From their JFm SR
simulation results, the cooperative solution NBS is shown twheres? models the white Gaussian noise variance on each
significantly outperform the competitive NE. subcarriem, p,, , > 0 represents the power transmitted by

The aim of this study is to design cooperative algorithmghe m'™ BS on then'™ subcarrier, and the corresponding
to maximize the overall system rate considering fairneggaximum achievable rate (known as capacity) with simple
between players, under the constraints of players’ minim&lecoder at the receiver side is given by [7]
rate requireme_nts and maximal transmit powers. Ronn = log (1 +vmn), ¥m V¥n @)

The paper is organized as follows. In section Il, we ’
describe the system model and the resource allocatibience, the sum-rate for each BSis
problem. In section lll, we characterize asymmetric NBS N N
with its efficiency. Finally, numerical results are prowvidie R, = Z Ry = Z 10g (1+Ymn), ¥Ym  (3)
section IV followed by a conclusion in section V. ne1

subcarrier 1 2 ... N

n=1
which represents the intuitive “utility” in a non-coopevat

Il. SYSTEM MODEL AND DESCRIPTION game setting [17]. The total transmit power of each BS is

. . . ., restricted by a power constraint
In this section, we describe the system model considering yap

N independent parallel Gaussian channels with trans- N _
mitters simultaneously communicating f6 receivers. We mev" < P, Vm (4)
define theM transmitter set ag/ := {1,2,..., M} and the n=1

N sub-channel set a8 := {1,2,..., N}. We assume that for P,, > 0, ¥m. Note that the non-cooperative setting of
each receiver is connected to several hot-spots (from which(3) has been studied in [17]. However, here we focus on
decodes data) on a pre-assigned carrier. It can download the cooperative setting for which we introduce the Nash
formation from several hot-spots simultaneously. MoreoveBargaining concept.

all receivers detect signals in different bands (a carrier)
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« Pareto optimality.

af Nash Bargaining Solution ] « individual rationality.

« Invariance to positive affine transformations.

« If the domainF is reduced to a subset of the domain

25

2z
ER 1 that contains the bargaining solution, then the bargain-
5 ing solution remains the same.
> 15
2 :
. , M
min\“m
max T (R~ R3") ©)

05 )
Rm,n>RpN m= 1

Disagreement outcome

0 05 1 15 2 25 3 Subject to
Player 1 utility
. . - . Vn €N,
Fig. 2. lllustration of Nash bargaining solution V0 7& JC {1 2 N} . Je 2/\/\{}
c{12,..., :
F = Rm,’n > 0
l1l. A SYMMETRIC NASH BARGAINING > ey R < log (1 + Z“%)

A. Nash Bargaining definition
g g wherew,, > 0 is the weight of “bargaining power” (which is

The_ Nash barggining i,s a nqtural framework that allows Us,|ate to the relative abilities of players in a situatiorexert
to define and design a fair assignment of rate between play§ts ,ance over each other) for player in the interaction.
which will play the role ofbargainers It is characterized Note that the outcome (rate set) of (5) may not be a

by a set of axioms that are appealing |n_def|n|ng faime asible “instantaneous” solution for the transmit pow®r (
or by a maximization of log-concave function on the set o

are faced with the problem to negotiate for a fair point ing. Transformation to concave optimization problem
the convex set of feasible rates. If no agreement can be

achieved by the players, the disagreement utilities (sate)-r
is obtained (see Fig.2).

The standard Nash bargaining assumes that all players
the_z cooperative game have the same pr|or|ty_. T_he symmetry max Z Wi log(Ru — R™0) (6)
axiom ensures all players have the same priority. It assures Rm‘f;;’m e
that the players will achieve the same NBS, if they have '
the same feasible utility function set. The asymmetric Naswhere the objective function is concave fhand the con-
bargaining is identical to the NBS except that #y@nmetry Straint spaceF is non-empty, convex and compact.
axiom is not satisfied. Hence, for a fixed value of disagreement point (for ex-

For a set of players/, a Nash bargaining game is definedample, the disagreement is equal to the worse Nash equilib-
by a pair(R™", F), whereF is a compact and convex setrium payoff), theasymmetric Nash bargaining solutigrise.
which defines the feasible set of utilities of all the agentsRV?® = {RYBS ... R}PS}, can be found by solving the
and (R2)m,n € F is known as the disagreement pointfollowing convex optimization problem:
which defines the amount of utility each player will get s .
if the bargaining process fails. Whenever the disagreement = arg  max. > wmlog(Rm — R™)  (7)
situation can be decided by a non-cooperative game, it is fim >R meM
reasonable to assume that the disagreement rate solutiorNiste that the uniqueness is only on the total rate in all the
given by a NE of the relevant non-cooperative game. Whesubcarrier of each player. Rate per subcarrier needs not be
the utility for playerm is given by the rateR,,(p) in (3), unique. Therefore, for each player, the bargaining saistio
andp™ is the power allocation matrix at the NE of the non-gver all the subcarriers will lead to the same utility. But
cooperative game (which can be obtained by IWF [16]), theplayers may have different utilities. The reason of non-

In order to find the rate NBS, we consider the non-concave
maximization problem (5), which can be actually transferre
tg a convex optimization:

R;™ can be taken as uniqueness of the bargaining solution is that the function
N R, () is not injective.
R = R (p*) = > _log (1 + Ym.n(P})), Ym We regularize the logarithm of the product (sometimes
n=1 referred toNash produdt by substituting the logarithmic

the worse Nash equilibrium payoff in the non-cooperative

th * 1An allocation of payoffs is Pareto optimal or Pareto efficidrihere is
case, where VeCtQﬁ‘ represents the™ column ofp*. The no other feasible allocation that makes every player at esstell off and

asymmetric bargaining solutiofRz,,),, € F satisfies the gt jeast one player strictly better off.
following conditions: 2Each player has at least the disagreement payoff.



function with the following function, defined for ai € R Proposition Ill.1. The Lagrangian multiplien is positive
by for all n, and at the optimality point, the largest rate
log(e) + =< ifr<e constraint must be satisfied with equality, i.e.
9e(r) = { log(r) ‘ if r>e

> Ry, =R (11)
This regularization replaces the logarithm function by its meM
Taylor first order development for small rates. We then have a
regular function to maximize in all the feasible sum-rate se

The following Lemma shows that this regularization give%io
the same bargaining solutions.

Proof: See in appendi.
From KKT conditions we have the following linear equa-
ns

* _ pM
Lemma IIl.1. For ¢ > 0 sufficiently small, equation (6) is Z Ry = 7, Vn (12)
equivalent to the following expression : meM .
. SR, = REtw,p7 ¥m (193)
I]ggj"-'( wmd)é (Rm - Rm, ) (8) neN
meM

and the parametgs can be calculated as
Proof: See in appendid. . .y -

Note that the expression (8) in Lemma Ill.1 maximizes g = Z Ry — Z Ry, (14)
over the entire sef of feasible and individual rational rate neN meM
profile. This result is crucial to gradient-based algorishmin general, equations (12), (13) havg N 4+ 1 variables
to not have to account for scenarios where a BS current{which ares and all theR,,, ,,), but one only yields\/ + N
achieves a utility lower than the disagreement point, whicindependent linear equations. This could simply imply that
may happen before the algorithm converges. We will be abtee optimization problem has multiple solutions. From Equa
to guarantee to each BS at least the worse Nash equilibriuion (13), we find that each player's sum-rate, _ ., RY, ,, is

rate at any step of the adaptive algorithm. unique at a bargaining solution. This confirms the uniquenes
in sum-rate, but we may have multiple splitting rate soluio
C. Karush-Kuhn-Tucker optimality conditions over the subcarriers.

It is easy to verlfy_ that the su_m-log fu_nct|on is concav%_ Pure Potential
and the corresponding constraint set is convex. So, the
Karush-Kuhn-Tucker (KKT) condition of the optimization The concept of potential games were proposed by Mon-
is sufficient and necessary for the optimality [6]. To derivederer and Shapley in 1996. The idea is to find pia¢ential

the KKT conditions, form the Lagrangian functiah as: functionsuch that the incentive of all players are mapped into
one global function, and the set of pure Nash equilibria can
_ min be found by simply locating the local optima of the potential
LR = Ze;/t wm log <§/R’”’” — B > function. In our problem, for a subgroup of playefsC M,

we define function

- SN R - R o(J) =3 log <1+E’"€Jp’"’”gm’") (15)

TCMneN meQs = o?

where R represents the maximum sum-rate on subcarri¢ghe maximum sum-rate that the coalitigh receives. Then
n for the sub-group of players7, \J > 0 is the dual ,v(f)) =0 and the following inequalities holds:
variable for the associated sum-rate constraint, and th& KK
conditions are

o({m}) = > log (1+ 200 ) > R, (16)
—B, = 0,VmV¥n (9 neN g

Wm

* _ min
Zne_/\/ Rm,n Rm

Forvm ¢ 7, we define
X R —R7| = 0,VnV 10
n (n; o n) nVJ  (10) Avy,. 7 = v(T U {m}) —v(J)
X pm,ngm,n+zm/€j pm’,ngm’,n
where the optimal rate seR* represents the sum-rate = Z log | 1+ 2
bargaining solutionR™?% in (7), and we defines, := neN
J i ’ m/ .nYm’n
> 7 meg.7cm M - Note that two observations can be made B Z log (1 + 2omreg Pt g,
based on (9): neN o2
« First, all theg,, have the same value, and we can define
_ Z lo 1+ Pm,ngm,n
/6) = ﬁl : @2 T 6N' . B & o? + Zm’ej Pm/ ndm’ n
« Second, it is easy to see that> 0, sincew,,, > 0, Vm. neN
> R,,. a7)



Hence, for any7 C J’, we have and the dual problem (DP) is obtained by inverting the
“max” and “min”;

A’Um’j 2 Avm“y/ (18)
. f L(R, A
Note that when7 = M\{m}, the termAuv,, ;s is exactly 20 Rsel%pM (B, 1)
the sum-rate of mobilen, R,,. We say thatv is a pure
potential. To see the link with static continuous-kerneho Azv(T) if Ay =1
cooperative potential games, consider the difference RSEUR%I L(R, A\ p) = { 2 o ngﬁgr@ise
AR, = Rm(pm»pfm) - Rm(Qm,P—m) Thus,
i Agv(T)
= log | o? + Pindin | — min 3.5\
g;\, gj\; (DP): ¢ st Y s A7 =1 VYmeJ
A7 >0, VT € 2M
Z 10g 0‘2 + qm’ngm’n + Z pg,ngj’n ) . o
neN jeM\{m} E. Stochastic Algorithm for Nash Bargaining
= wWPm,P-—m) — W(¢m;sP—m) (29) In this part, we develop a recursive method of (8) to

Wherew(pom, p_m) = v(M), compute a Nash bargaining solution. Denote

LR = wmoe(Rm — B2 — M Ron— R,
ey o Pt (R, )) ; X )= XD R, )
W(gm,p-m)=»_log

meM
neN A saddle point of the lagrangiad(-,-) is the pair (R, \)
Next, we derive some relations between the pure potentig@tisfying

and maximal feasible solutiongdre). For 7; and J> two LR\ < L(R.N) < L(R,N), VR WX
subgroups of players, one has, T T T

o2

A necessary and sufficient condition f&t = (R, )m,n

v(Jh) + v(J2) to be a constrained minimum is that there is\awith
- Y [( Yomed pm,ngm,n) nonnegative components such tii, \) is a saddle point
= og |1+ 5 . . .
= o of L(R,\). Let us now consider a recursive algorithm for
D finding a saddle point. Le®?, ,, denote the*" estimates and
(1 4 =mes pgm’”gm’”ﬂ use the following form of the Robbins-Monro procedure. Let
g C denote the hypercube
Z’HL J1UT: Pm.ndmn Pmndmn
> Z log (1 + =l 1u022} H [R,’ﬂ”;l,log (1 + T)}
neN m,n
= (V%) (20)  The multipliers) are bounded because they are non-negative
This implies that is subadditivei.e.v(J; UJ) < v(J1)+ and their sum is upper-bounded (see equation (14)) by
U(jz). 1
Using theses properties, the set of feasible utilities with > log (1 4 X mem pm,ngm,n)
maximal value forM, i.e Y . R, = v(M), satisfies neN .

VT C M, e Bn < v(J). This set is sometimes From the KKT conditions, the constraint set can be reduced
referred to the core. We transform the inequalities thanheefi to

the core to a linear program (LP) problem: cn {R f: B <R Une N}
max E Rm ) — m,n = mny
LP) : m 21
( ) { s.t. ReF ( ) Denote
Then, the non-emptiness of the core is exactly equivalent _ Z R

to the optimum value of the primal problem (21) (with
LP feature) is equal t@(M). The dual problem, through
Lagrangian multipliers, can be written as:

m=1

The recursive algorithm is then given by

LR 1) ALY = max (0,M + €'qn(R") + €'xL)
y A5 b Rf{"l _ projc [Rn,t + ¢ (,CR(Rt,/\t) +5fz)]
=Y Rn Z Ag < > Bm ) + > wmBm where the vector
m meJ meM " .
Rn = [Rl nrc RJ\I,n}

The primal problem (LP) can be interpreted as

max inf L(R,\, u) Lr(R, )

M A>0, ’ = t
RERY *20 OR},,

0 0
E('? )‘t)7 ceey
ORY;

L(-, A



proj. denotes the projection operator over the hyperatipe  Note that we may not have strong equilibria in a strategic
&t is the “noise” or “error” in the estimate of (R, \) and way in terms of transmission power. The following assegion
x!, is the “noise” in the estimate af,. Using the regularized are equivalent:

function ¢, in the Lagrangian, we obtain a regular concave- , p* = (p*,,p*,,) is a feasible transmit power set which
convex function to maximize on the sum-rates and minimize  gjves a rate profile that satisfies (12) and (13).

on the \. Using the methods in [15], the algorithm can be , p* = (p;krwpim) is a strategic strong equilibrium.
shown to converge to a saddle point under some conditions

on the learning rates’ (35, ¢’ = 400, 37,(€")* < +00) . Efficiency and benefit of Bargaining

with a good approximation of the noises. We aim to measure the gap between the worse bargain-

F. Strong Equilibria ing _solutio_n by varying the disagreer_nent vaIJ’iﬁi'éilflin and_
. . I ) social optimum value (fully cooperative solution). Define
Since the definition of Nash equilibrium only requires the,, efficiency of sum-rate bargaining as the minimum over
absence of any profitable unilateral deviations by any playe »min J) of the ratio between the total sum-rate at the
A N,as.h eqwllbrlum s not guaranteed to be invulnerable t argaining solution and the maximum value for the potential
deviations by po_almons of players however. To stuc_;ly (_)U(lS)_ It is easy to see that the ratio is less than one
problem, we will introduce the concept of Strong equmbrlain a sum-rate bargaining solution. The efficiency of sum-

pfo’?‘?s‘?d_by Aumann in [21]. No_tg t.hat the get of St_“_)”gate bargaining is greater than the sum-rate of competitive
equilibria is a subset of Nash equilibria (by taking coaliti solutions (known as price of anarchy).
of size one) and then any constrained strong equilibria IS \ya introduce the benefit of bargaining (BoB) to measure

Pareto.optimal (by taking coaIiFion of full s.ize). ) the gap (in percentage) between the worse bargaining solu-
We first describe the constrained strategic gaigefined i, and the worse competitive Nash equilibrium.

as:
o The set of players is\. BoB =

« The set of rates of playern is 0 < R, and
Y nen Bmn < Ry, such that in each subcarrier, anywhere total-sum-rate at NBS is defined as

total-sum-ratg 55 — total-sum-rate g
total-sum-rate ¢

subgroup” of players are constrained to a common set Z RNBS
m
pm,ngm,n meM
ZNR"W < log (1 + Zj o2 > Since the worse competitive Nash equilibrium is an interior
ne me

point of the capacity region, there is a gap between this
s point and the Pareto frontier. This means that the BoB in

« If all the constraints are satisfied, each playereceive . .
sum-rate is at least non-negative.

R, otherwise they get zero.

A vector of rates is a&—strong equilibrium ofG if it is
feasible and no coalition of size can improve the sum-rate IV. NUMERICAL ILLUSTRATIONS
of each of its members with the respect to the constraints in | this section, we provide some numerical results to

F. A vector o_f_sgm-rates is a strong equilibrium if it is agemonstrate the advantage of NBS regarding alerage
k—strong equilibrium for any sizé& = 1,..., M. A strong  system performance. As a basis of comparison, the Nash
equmbnu_m is then a.sphttmg rate from which no coalition gqyiliprium and the social optima of the non-cooperative
(of any size) can deviate and improve the sum-rate of evegames will be provided and denoted by “NE” and “Optima”,
member of the coalition (group of the simultaneous movesjegpectively.

while possibly lowering the sum-rate of players outside the \we consider a Wyna linear network witt3 BSs
coalition group. This notion of strong equilibria is VerY (transmitters) an® MTs (receivers), as shown in Fig. 3.
attractive because it is resilient against coalitions af/pts. The 3 BSs are equally spaced with distante- 20 meters.
Most of the games do not admit any strong equilibrium.  The |ocation of MT1 is fixed at the middle of BS1 and

Proposition 11l.2. The Nash bargaining solution for the BS2. Let L, be the horizontal distance between BS2 and

sum-rate problem is a strong equilibria fa&. MT2, we let MT2 moves from the right border of BS2
(L2 = 1 meter far from BS2) to the middle between BS2

Proof: See in appendixX’. and BS3 (, = 10 meters far from BS2). The height of
Moreover, the gamé&' has many strong equilibria, which each BS ishpg = 3 meters; the power constraint of each
will be described in Proposition 11.3. BS is P = 1; the variance of additive white Gaussian noise
Proposition 11.3. The set of strong equilibria of! is is set too® = 0.01; The propagation loss factor is three.

The system performance (spectral efficiency in Bits/Sec/Hz
, , is averaged overl0* realizations of frequency selective
Z Z Ry = v(M), By iy 2 B fading channels. Fig. 4 shows the average system spectral
neNmeM efficiency (SE) vs.L, (in meters). The NBS outperforms
Proof: See in appendiD. the NE and the Optima of the non-cooperative games.

{ (R;n,n)m,n € f
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Fig. 5 shows the benefit of bargaining (BoB) Vs,. Note algorithm is proposed to converge to one point as a NBS on
that by performing base stations cooperation through Nashe Pareto boundary. Finally, in our simulation results, we
bargaining, the overall system performance is improveshow the NBS not only provides a fair power allocation for
around 23% (between16.5% and 28% when L, varies players, but also outperform the system spectral efficiency
from 1 meter to 10 meters, respectively), comparing tocompare to NE and Optima solutions (without considering
the Nash equilibrium in the non-cooperative game settindairness) of the non-cooperative games. Future works will
In Fig. 6, we compare the average spectral efficiency fdocus on coalition games and dynamic Nash bargaining.
the three BSs when different game solutions are applied.
As expected, Nash bargaining provides a more “fair’ and
efficient solution compared to the non-cooperative game APPENDIX
solutions: NE and Optima. By using NBS scheme, BS1 anél. Proof of Lemma Ill.1
BS2 maintain 'Fhe similar performance as in NE and Optima,  pygof: By definition of the disagreement outcome and
but BS3 obtains nearly doubled-performance compare {fe feasible payoffs sef, suppose that there exists a feasible
NE and Optima schemes. rate profileR that component-wise dominaté&s*™™, then we
must haveR,, > Rﬁi“, Vm, which implies the existence
of €, > 0 such thatR,, — R™* > ¢,, for all m. Let €
be the minimum of the{e,, } merr. Then,é > 0 is strictly

In this paper we described the scenario of multiplgositive. Lete such thatd < e < €. The supremum over
transmitters communicating with multiple receivers tigbu 7 must be in the regiom,, > R + ¢ for all m. Thus,
independent parallel sub-channels as a cooperative gamie, ¢.(R,—R,,") = log(R,,—R;,") and the constrained
We mainly study the Nash bargaining game by usinghaximization of "™ | w,,¢c(R,, — R™") coincides with
KKT conditions and pure potential. A recursive StOChaSti(zzﬁle Wy log(R,, — R™™). Now consider the case where

V. CONCLUSION AND FUTURE WORKS



the rate profile satisfies the following: there exists a n@bilthe payoff of each player will be zero. In the capacity region
m for which the total rate over all the channéls, is strictly  the total sum rate is constrained to the following ineqyalit
lower than the disagreement rafé™™™ +¢ > R,,. Then, we

show that this configuration cannot be a Nash bargaining Z R, < Z R, = Z R,

solution. meJ meJge meJ

So, the optimal deviation will have the equality

> By= D Bn
meJ meJ

This means that if a sum-rate of one of the players7in

D/ min
R, — Ry™ —¢
€

oe(Ry, — Ry™) = log(e) +

R™ in

and the terrr% is negative. Thus,

cc = Zwmf¢e(3mf - Ry (22) increases, then there exists another player in the coalifio
for which the sum-rate decreases after deviating. Thus, the
< wmlog(e) Z Wi og(Ruy — RIJM) (23)  coalition is non-profitable, and this holds for any coatitio
m/Fm J C M. We conclude that the bargaining solutions are
< min) (24) strong equilibria of the gamé.

Z Wi log (R —
"

7Therefore,R is never the maximizer of (6). Thus, for
R to be a maximizer, it must satist®R,, > R, min fOr

D. Proof of Proposition 111.3

Proof: First, remark that if the sum-rate profil&

all m i.e Vm, ¢o(Ry — RMIn) = log(R — Rmin) and is not in boundary surface of the capacity region, then

the constrained maX|m|zat|on (E Win®e (R — RN is not resilient by deviation by a single player. Hence,

over F coincides with S w Wlbogl(R len) over cannot be a coalition-proof equilibrium [22]. This says
m=1%m m m

FNR, R that a necessary condition for a rate profile to be a strong
equilibrium for G is to be in the subset the maximal face
B. Proof of Proposition .1 of the sum-rate capacity region. It is easy to see that

sum-rate constramt then, the sum-rate constraints of the new coalition

bounded) ., R < v(M) =3 o7 Ry The players
Z R’m n > in the coalition with a lower rateR’,, < R,, do not
meM benefit to be member of the coalition (Shapley criterion of
On the one hand, sinck™ = 0, there must exist at least membership of coalition does not hold), and this holds for
one player set7 (J # M) satisfying\/ > 0, due to the anyJ & € M with cardinality of 7 > 1. This completes the
fact 3 > 0. This implies proof.

Y Bh.=R
meJ

On the other hand, for the complementary player sef/of [1] M. Debbah, “Mobile Flexible Networks: The challengeseatl”, in

i.e. J¢:= M— 7, the following constraint must be satisfied Proc. International Conference on Advanced TechnologisCom-
munications Viet Nam (2008), pp. 3-7, Oct. 2008.

. > RN This completes the proof.

is

(25)

(26)
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