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Abstract—In this work, a Bayesian framework for OFDM
channel estimation is proposed. Using the maximum entropy
principle to exploit prior system information at the receiver,
we successively derive channel estimates in situations when (i)
the channel delay spread and (ii) the channel time correlation
statistics are a priori unknown. More generally, this framework
allows to derive MMSE channel estimates under any state of
knowledge at the receiver. Simulations are provided that confirm
the theoretical claims and show the novel results to perform as
good or better than classical estimators.

I. INTRODUCTION

Modern high rate wireless communication systems, such as
3GPP-Long Term Evolution (LTE) [1], usually come along
with large bandwidths. In multipath fading channels, this
entails high frequency selectivity, which theoretically is ben-
eficial for it provides channel diversity. But in practice, this
constitutes a strong challenge for equalization. Orthogonal fre-
quency division multiplexing (OFDM) modulation [2] allows
for simplified equalization and channel estimation based on
pilot symbols scattered in the time-frequency grid and possibly
over the space dimension when multiple antennas are used.

One challenge in channel estimation with a limited number
of pilots is to correctly exploit the prior information at the
receiver. Classically only data received from pilot positions
are considered informative. As a consequence, between pilot
positions, the estimated channel must be reconstructed using
satisfactory interpolation techniques, e.g. [3]. A Bayesian
minimum mean square error (MMSE) [4] estimator can be
derived when not only the pilot sequences but also the channel
covariance matrix are known [5]. However, when the latter
is unknown, only ad-hoc techniques have been proposed to
cope with the lack of information, e.g. by making a definite
choice of a prior channel correlation matrix (identity matrix,
exponentially decaying matrix [6] etc.). However, all those
techniques are only justified by good performance arising in
selected field simulations and do not provide any proof as for
their overall performance.

In the following work, we tackle channel estimation for
OFDM as a problem of inductive reasoning based both on
received pilots and on the available prior information at the
receiver. To cope with missing information, we extensively
use the maximum entropy principle, shown by Jaynes [7]

to be the desirable mathematical tool to deal with limited
information. Some of the aforementioned classical results will
be found anew and proven optimal in our framework, while
new results will be provided which show to perform better than
classical approaches. The remainder of this paper is structured
as follows: in Section II, we introduce the channel pilot-
aided OFDM system, then in Section III, we carry out the
Bayesian channel estimation study based on different levels
of knowledge. Simulations are then proposed in Section IV.
We finally give our conclusions in Section V.

Remark 1: In the remainder of this document, due to page
limitation, complete derivations are not provided. Those are
fully developed in an extended version of this work [13].

Notations: Boldface lower case symbols represent vectors,
capital boldface characters denote matrices (IN is the N ×N
identity matrix). The transpose and Hermitian transpose are
denoted (·)T and (·)H. The operator diag(x) turns the vector x
into a diagonal matrix. The symbol det(X) is the determinant
of X. The symbol E[·] denotes expectation. The Kronecker
function δx equals 1 if x = 0 and equals 0 otherwise.

II. SYSTEM MODEL

Consider a single cell OFDM system with N subcarriers.
The cyclic prefix (CP) length is NCP samples. In the time-
frequency OFDM symbol grid, pilots are found in the symbol
positions indexed by the function φt(n) ∈ {0, 1} which equals
1 if a pilot symbol is present at subcarrier n, at symbol time
index t, and 0 otherwise. The time-frequency grid is depicted
in Figure 1. Both data and pilots at time t are modeled by
the frequency-domain vector st ∈ CN with pilot entries of
amplitude |st,k|2 = 1. The transmission channel is denoted
ht ∈ CN in the frequency-domain with entries of variance
E[|ht,k|2] = 1. The additive noise is denoted nt ∈ CN with
entries of variance E[|nt,k|2] = σ2. Since this variance is
the only available information on nt, the maximum entropy
principle [10] requires that the noise process be assigned a
Gaussian independent and identically distributed (i.i.d.) den-
sity1, n ∼ CN(0, σ2IN ). The time-domain representation of
ht is denoted νt ∈ CL with L the channel length, i.e. the

1the reason is that the distribution which maximizes entropy under variance
constraint is Gaussian i.i.d., see e.g. [12].
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Fig. 1. Time-frequency OFDM grid with pilot positions enhanced

channel delay spread expressed in OFDM-sample unit. The
frequency-domain received signal yt ∈ CN is then

yt = diag(ht)st + nt (1)

We will also denote, ∀k ∈ {1, . . . , N}, h′t,k = yt,k/st,k =
ht,k + nt,k/st,k and h′t = (h′t,1, . . . , h

′
t,N )T.

This work aims at providing MMSE estimates ĥt ∈ CN of
the vector ht for different states of knowledge at the receiver:
(i) the channel length L is either known or unknown, (ii) at
discrete time t0, the pilots received at time t < t0 as well
as the channel time-correlation, are either known or unknown.
The total prior information in either case will be denoted I
and the amount of information that can be inferred on the
statement E from I will be denoted (E|I).

III. CHANNEL ESTIMATION

A. The channel length is known

First consider that the channel power delay profile, i.e.
E[νtν

H], is unknown. Only the channel length L and the
received pilot sequence at discrete time t are known to the
receiver2. For ease of reading, we remove the index t in the
notations when unnecessary.

From the channel model (1), the multipath channel of length
L is only known to be of unit mean power. The maximum
entropy principle therefore demands ν ∼ CN(0, 1

LIL). Since ν
is Gaussian with i.i.d. entries, its discrete Fourier transform is
a correlated Gaussian vector h ∼ CN(0,Q) with, for (n, m) ∈
{1, . . . , N}2,

Qnm = E

[
L−1∑
k=0

L−1∑
l=0

νkν∗l e−2πi kn−lm
N

]
=

1
L

L−1∑
k=0

e−2πik n−m
N

(2)

2we assume then first that the receiver is not able to remember either past
received signals, nor past estimates of the channel.

The MMSE channel estimator ĥ knowing y and I reads [4]

ĥ = E [h|y] (3)

=
∫

CN

h
P (h)P (y|h)

P (y)
dh (4)

=
∫

CN

h
P (h)P (y|h)(∫

CN P (h)P (y|h)dh
)dh (5)

= lim
Q̃→Q

∫
CN

h · e−hHQ̃−1h · e−
1

σ2 (h−h′)HP(h−h′)dh(∫
CN e−hHQ̃−1h · e−

1
σ2 (h−h′)HP(h−h′)dh

)
(6)

in which the limit is taken over a set of invertible matrices Q̃
which tends to Q (which is by definition of rank L < N ),
and P is a projection matrix over the set of pilot frequency
carriers, i.e. Pij = δi−jδφ(i).

The product of the exponential terms in (6) can be written,
after expansion and identification,

hHQ̃−1h +
(h− h′)HP(h− h′)

σ2
= (h− k̃)HM̃(h− k̃) + C̃

(7)

with 
M̃ = Q̃−1 + 1

σ2 P
k̃ = 1

σ2 M̃−1Ph′

C̃ = 1
σ2 h′

HPh′ − k̃HM̃k̃
(8)

This allows to isolate the dummy variable h in the integrals
and leads then to compute the first order moment of a
multivariate Gaussian distribution,

ĥ = lim
Q̃→Q

∫
CN

h · e−(h−k̃)HM̃(h−k̃)dh∫
CN e−(h−k̃)HM̃(h−k̃)dh

= lim
Q̃→Q

k̃ (9)

As M̃−1 = (Q̃−1 + 1
σ2 P)−1 = (IN + 1

σ2 Q̃P)−1Q̃,

ĥ = lim
Q̃→Q

(σ2IN + Q̃P)−1Q̃Ph′ = (σ2IN + QP)−1QPh′

(10)

which is classical LMMSE solution [4], when the covariance
matrix of the channel is known to be (or assumed to be) Q.

B. Unknown channel length
If L is only known to be in an interval {Lmin, . . . , Lmax},

the maximum entropy principle assigns a uniform prior dis-
tribution for L [10]; otherwise one would add non desirable
explicit information on a particular value for L. And then,

ĥ = E [h|y] (11)

=
∫

CN

h
(
∑

L P (h|L)P (L))P (y|h)(∫
CN (

∑
L P (h|L)P (L))P (y|h)dh

)dh (12)

which, from similar derivations as in Section III-A, is

ĥ = lim
Q̃k→Qk

Lmin≤k≤Lmax

Lmax∑
L=Lmin

1
det Q̃L

×
∫

CN

h · e−hHQ̃−1
L h · e−

1
σ2 (h−h′)HP(h−h′)dh∑

L
1

det Q̃L

∫
e−hHQ̃−1

L h · e−
1

σ2 (h−h′)HP(h−h′)dh
(13)



where Qk is the channel covariance matrix for a channel
length k ∈ {Lmin, . . . , Lmax} and Q̃k are taken in a set of
invertible matrices in the neighborhood of Qk.

Using the same transformations as in (7) , we end up with

ĥ = lim
Q̃k→Qk

Lmin≤k≤Lmax

∑Lmax
L=Lmin

det(M̃(L)Q̃L)−1e−C̃(L)
k̃(L)∑Lmax

L=Lmin
det(M̃(L)Q̃L)−1e−C̃(L)

(14)

with 
M̃(L) = Q̃−1

L + 1
σ2 P

= Q̃−1
L (IN + 1

σ2 Q̃LP)
k̃(L) = 1

σ2 (IN + 1
σ2 Q̃LP)−1Q̃LPh′

C̃(L) = h′H
(
IN + 1

σ2 Q̃LP
)−1

P
σ2 h′

(15)

The scalar det(M̃(L)) can be further developed to obtain

det(M̃(L)Q̃L) = det(IN +
1
σ2

Q̃LP) (16)

No inversion of Q̃k matrices is then necessary so that the
limit is well-defined and

ĥ =

Lmax∑
L=Lmin

det
(

(IN +
1
σ2

QLP)−1

)
e−C(L)

k(L)

Lmax∑
L=Lmin

det
(

(IN +
1
σ2

QLP)−1

)
e−C(L)

(17)

in which k(L) and C(L) are the limits of k̃(L) and C̃(L)

respectively,{
k(L) =

(
IN + 1

σ2 QLPHP
)−1 1

σ2 QLPh′

C(L) = h′H
(
IN + 1

σ2 QLP
)−1 P

σ2 h′
(18)

Since C(L) comprises the quadratic term h′HPh′, the
MMSE estimation of h is not linear in h′. Therefore, the
LMMSE estimate in the scenario when L is unknown is not
an MMSE estimate. We also note that Equation (17) is a
weighted sum of the individual LMMSE estimates for different
hypothetical values of L. The weighting coefficients allow to
enhance the estimates that rather fit the correct L hypothesis
and to discard the others, based solely on the h′ observation.

C. Using time correlation

When the channel coherence time, i.e. the time over which
the channel realizations are correlated [8], is of the same order
or larger than a few OFDM symbols, then past and future re-
ceived data carry important information on the present channel
realization. This information must be taken into account.

Classically, channel time correlation is described through
Jakes’ model [9]. For a Doppler spread fd (proportional to
the vehicular speed), the correlation figure is modeled as

E[νt+T,pν
∗
t,p] =

1
L
· J0(2πfdT ) (20)

in which J0 is the zero-order Bessel function of the first kind.
Note that Jakes’ model (20) is based on the maximum entropy
principle based on the only assumption that E[|νt,p|2] = 1

L .

Suppose now that only the present and previous past pilot
symbols are considered by the terminal. Those correspond to
two time instants t1 and t2, respectively. Consider first that L
is known to the receiver. For notational simplicity, we denote
hk = htk

. The MMSE estimator for h2 under this state of
knowledge is then

ĥ2 = E[h2|h′1h′2] (21)

=
∫
h2

h2
P (h2)P (h′2|h2)P (h′1|h2)

P (h′1h
′
2)

dh2 (22)

=
∫
h2

h2

P (h2)P (h′2|h2)
∫
h1

P (h′1|h1)P (h1|h2)dh1

P (h′1h
′
2)

dh2

(23)

in which we implicitly stated that h1 and h2 do not bring any
information to, i.e. are independent of, (h′2|h2) and (h′1|h1)
respectively.

Note that, apart from the new term P (h1|h2), all prob-
abilities to be derived here have already been evaluated in
the previous section. Our knowledge on (h1|h2) is limited
to Equation (20). Burg’s theorem [11] states then that the
maximum entropy distribution for (ν1|ν2) is an L-multivariate
Gaussian distribution of mean λν2 and variance 1

L (1−λ2)IL

with λ = J0(2πfd[t2 − t1]). Thanks to the same linearity
argument as above, the distribution of (h1|h2) is

P (h1|h2) = lim
Φ̃→Φ

1
πN det(Φ̃)

e−(h1−λh2)
HΦ̃−1(h1−λh2)

(24)
with Φ(T ) = (1− λ2)Q.

Proceeding as previously, and denoting Pk the projection
matrix of the pilots at time tk and M2 such that

QM2 =
IN

1− λ2
− λ2

1− λ2
(IN +

1− λ2

σ2
QP1)−1 +

QP2

σ2

(25)
we finally have

ĥ2 = M−1
2

(
P2h′2
σ2

+ (IN +
1− λ2

σ2
P1Q)−1 λ

σ2
P1h′1

)
(26)

This formula stands only when the channel length L is
known. Then, if L is only known to belong to an interval
{Lmin, . . . , Lmax},

ĥ2 =

∑Lmax
Lmin

det(ALBL)−1e−C2
(L)

k(L)
2∑Lmax

L=Lmin
det(ALBL)−1e−C2

(L)
(27)

with
AL = IN + 1−λ2

σ2 QLP1

BL =
(
1 + λ2

1−λ2

)
IN − λ2

1−λ2

(
IN + 1

σ2 QP1

)
C2 = 1

σ2 h′2
HP2h′2 − kH

2 M2k2 + 1
σ2 h′1

HP1h′1
− h′1

H
(
IN + 1−λ2

σ2 QP1

)−1
1

σ2 P1h′1

and k2 is given by the right hand side of Equation (26).
The final formulas (26) and (27) are interesting in the

sense that they do not carry intuitive properties; if we were
to find an ad-hoc technique to assess the relative importance



ĥ =

((
1 +

K∑
k=1

λ2
k

1− λ2
k

)
IN −

K∑
k=1

λ2
k

1− λ2
k

(
IN +

1− λ2
k

σ2
QPk

)−1
)−1

Q

(
K∑

k=1

λk

(
IN +

1− λ2
k

σ2
PkQ

)−1 1
σ2

Pkh′k

)
(19)

of the prior information I , the pilot data h′2 and the past or
future pilot data h′1, we would suggest a linear combination of
those constraints. Our result is not linear in those constraints.
However it carries the expected intuition in the limits,
• when λ = 0, past and present channels are uncorrelated

so that no information carried by the past pilots is of
any use. Equation (26) is consistent in this sense since it
reduces to the LMMSE solution (10).

• λ → 1 leads to the same Equation as (26) but with past
and present pilots h′1 and h′2 gathered into a single pilot
sequence h′ = h′1 + h′2 with projector P = P1 + P2,

ĥ2 =
1
σ2

(
IN +

1
σ2

QP
)−1

QPh′ (28)

Note also that (26) is linear in h′1 and h′2, so the MMSE
solution is also the LMMSE solution when L is known.

The previous derivation (26) is further generalized for a
number K of pilot sequences h′k, k ∈ {1, . . . ,K}, sent
through channel hk at time tk, and a channel h at time t
which satisfy, for (i, k) ∈ {1, . . . , L} × {1, . . . ,K},

E[νi,tν
∗
i,t+tk

] =
λk

L
(29)

The maximum entropy principle and the same derivations as
in previous calculus give in this situation the MMSE estimator
ĥ of Equation (19).

D. Unknown correlation factor λ

Similarly to what we did previously with the possibly
unknown parameter L, we can equally integrate out the
parameter λ from our formulas, which is in practice difficult
to estimate. For K = 2, in Equation (23), P (h2) equals∫

λ
P (h2|λ)P (λ)dλ and ĥ2 then reads,

ĥ2 = E[h2|h′1,h′2] (30)

=
∫

λ

P (λ)E[h2|h′1,h′2, λ]dλ (31)

in which P (λ) is the probability assigned to (λ|I). This
last integral is however rather involved3. It can then be
approximated by the discrete summation,

ĥ2 '
∑

λ∈S(λmin,λmax)

P (λ)E[h2|h′1,h′2, λ] (32)

if λ is known to belong to some discrete set S(λmin, λmax)
such that λmin ≤ λ ≤ λmax.

Remark 2: In previous sections, we considered E[nnH] =
σ2IN . In the presence of interference, the noise correlation

3note that in the previous sections, we implicitly took a Dirac in the known
value for λ as P (λ).
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matrix Cn = E[nnH] is colored. If the information about Cn

is considered, all the previous equations must then be updated
by replacing all terms 1

σ2 P by PHCnP.

IV. SIMULATIONS AND RESULTS

In this section, we provide Monte Carlo simulations of some
of the previously derived algorithms. We consider an OFDM
system provided with N = 128 subcarriers, and a CP size
NCP = 32. In a first simulation, we take a channel of average
length L = 15. The pilot symbols are spaced every 6 subcar-
riers in frequency. This situation is one of the configurations
of the 3GPP-LTE standard [1], which is depicted in Figure
1. Figure 2 provides the mean square error, averaged over
10, 000 channel realizations, of a channel estimator induced
by Equation (17). Each channel realization is drawn from an
L-multipath model with i.i.d. Gaussian entries. The channel
length L is either known to the receiver (we use then Equation
(9)), known to be such that L ∈ {1, . . . , 32} (we use then
Equation (17)) or erroneously estimated to Lest = 14 (we
use then Equation (9) with Lest = 14). Interestingly, while
erroneous approximations for L may lead to dramatic loss in
performance in the high SNR region, almost no performance
decay is observed when L is either known or unknown. This
means that the Bayesian framework, when inferring on (h|y),
indirectly performs inference on (L|y). Indeed,

P (L|y) =
P (L)P (y|L)

P (y)
=

P (L)
P (y)

∫
h

P (y|h)P (h|L)dh

(33)
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in which the integral is the same as in Section III-A and P (L)
is the uniform prior (maximum entropic) distribution for L.

Figure 3 provides the odds O(L|y) [10] associated to (L|y),
averaged on 10, 000 channel realizations, for N = 128, L =
15, Lmin = 1, Lmax = 32 and different values of SNR. The
odds function O(L) is defined as

O(L|y) =
P (L|y)∑
l 6=L P (l|y)

(34)

As predicted, O(L = 15) is higher than O(L 6= 15) and
this behaviour is enhanced for high SNR. This leads to an
updated posterior distribution P (L|y) that almost discards all
hypothesis but L = 15.

Note also that simulations with 3GPP-standardized multi-
path channels (instead of Gaussian i.i.d. channel models) were
performed, which did not show dramatic performance loss due
to the erroneous maximum entropy assumption on the channel.
The complete results are provided in [13].

In Figure 4, channel estimation is performed using two pilot
sequences correlated in time. The receiver either knows the
exact correlation coefficient λ = 0.999 or only knows that
λ ∈ [0, 1] or λ ∈ [0.9, 1]. The channel length L = 25 is
known (performance gain in this case is only significant for
long channels). We observe that a limited knowledge on λ
does not strongly impact the performance of the estimation in
the low-to-medium SNR region. When the receiver knows λ >
0.9, the mean square error is similar to that when λ is perfectly
known. This suggests again that the Bayesian machinery is
able to implicitly infer on λ, which is more efficient than using
empirical values for λ.

V. CONCLUSION

In this work, a Bayesian framework for OFDM channel
estimation is proposed. Under different levels of knowledge
on the relevant system parameters at the receiver, MMSE
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estimates are derived that re-demonstrate known classical
solutions while new formulas are also proposed. The whole
work can be synthesized in a simple Bayesian methodology
that allows to optimally use the information at the receiver.
Simulations are also provided that confirm the performance
superiority of the derived formulas over classical methods.
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