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Abstract— Physical layer security is an emerging security
technology that achieves perfect secrecy data transmission
between the intended network nodes, while the eavesdrop-
ping malicious nodes obtain zero information. The so-called
secrecy capacity can be improved using friendly jammers
that introduce extra interference to the eavesdropping ma-
licious nodes while the interference to the intended desti-
nation is limited. In this paper, we investigate the interac-
tion between the source that transmits the desired data and
friendly jammers who assist the source by “disguising” the
eavesdropper. In order to obtain a distributed solution, we
introduce a game theoretic approach. The game is defined
in such a way that the source pays the friendly jammers to
interfere the eavesdropper, therefore increasing its secrecy
capacit; and the friendly jammers charge the source with a
certain price for the jamming. There is a tradeoff for the
price: If the price is too low, the profit of the jammers is
low; and if the price is too high, the source would not buy
the “service” (jamming power) or would buy it from other
jammers. To analyze the game outcome, we define and in-
vestigate a Stackelburg game and construct a distributed
algorithm. Our analysis and simulation results show the ef-
fectiveness of friendly jamming and the tradeoff for setting
the price. The fancy title comes from the fact that it is
similar to a scenario where the main character, namely the
“source” tries to send a dating message to a lady (the in-
tended destination), whose poor boyfriend plays the role of
the eavesdropper that may hear the message. Friends of the
source, the so called “friendly jammers,” try to distract the
boyfriend, so that the dating message can be secretly trans-
mitted. The game is defined in order to derive what is the
optimal price that the friends can charge for this “friendly”

action. . .
Keywords—Physical Layer Security, Secrecy

Jamming, Game Theory, and Stackelburg game

Capacity,

I. INTRODUCTION

Nino, rephrase most of sentences and add most
recent literature for phy sec.

The future communication systems will be decentralized
and ad-hoc, therefore allowing various types of network
mobile terminals to join and leave. This aspect makes the
whole system vulnerable and susceptible to attacks. Any-
one within communication range can listen and possibly
extract information. While these days we have numerous
cryptographic methods with high level security, there is
no system with perfect security on physical layer. There-
fore, the physical (PHY) layer security is regaining a new
attention. The main goal of this paper is to design a decen-
tralized system that will protect the broadcasted data and
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make it impossible for the eavesdropper to receive the pack-
ets even if it knows the encoding/decoding schemes used by
the transmitter/receiver. In approaches where PHY layer
security is applied, the main objective is to maximize the
rate of reliable information from the source to the intended
destination, while all malicious nodes are kept as ignorant
of that information as possible. This maximum reliable
rate is known as secrecy capacity.

This line of work was pioneered by Aaron Wyner, who
defined the wiretap channel and established the possibility
to create almost perfect secure communication links with-
out relying on private (secret) keys [1]. Wyner showed
that when the eavesdropper channel is a degraded version
of the main channel, the source and the destination can ex-
change perfectly secure messages at a non-zero rate. The
main idea proposed by him is to exploit the additive noise
impairing the eavesdropper by using a stochastic encoder
that maps each message to many codewords according to
an appropriate probability distribution. With this scheme,
a maximal equivocation (i.e., uncertainty) is induced at the
eavesdropper. In other words, a maximal level of secrecy
is obtained. By ensuring that the equivocation rate is ar-
bitrarily close to the message rate, one can achieve perfect
secrecy in the sense that the eavesdropper is now limited
to learn almost nothing about the source-destination mes-
sages from its observations. Follow-up work by Leung-Yan-
Cheong and Hellman characterized the secrecy capacity of
the additive white Gaussian noise (AWGN) wiretap chan-
nel [2]. In their landmark paper, Csiszdr and Korner gen-
eralized Wyner’s approach by considering the transmission
of confidential messages over broadcast channels [3]. Re-
cently, there have been considerable efforts on generalizing
these studies to the wireless channel and multi-user scenar-
ios (see [4-12] and references therein). Jamming [13-15]
has been studied for a long time to analyze the hostile be-
haviors of malicious nodes. Recently, jamming has been
employed to physical layer security to reduce the eaves-
dropper’s ability to decode the source’s information [16].
In other words, the jamming is friendly in this context.

Game theory [17] is a formal framework with a set
of mathematical tools to study the complex interactions
among interdependent rational players. For more than half
a century, game theory has led to revolutionary changes in
economics, and has found important applications in poli-
tics, sociology, psychology, transportation etc. During the
past decade, there has been a surge in research activities



that employ game theory to model and analyze modern
communication systems. This is mainly due to: (1) the
emergence of the Internet as a global platform for compu-
tation and communication, which has sparked the develop-
ment of large-scale, distributed and heterogeneous commu-
nication systems; (2) the deregulation of the telecommuni-
cation industry and the dramatic improvement in compu-
tation power, which make it possible for various network
entities to make independent and selfish operational de-
cisions; and (3) the need for robust designs against uncer-
tainties modeled as games between the user and a malicious
nature. Most of these works [18-21] concentrate on the dis-
tributed resource allocation for wireless networks. As far
as the authors’ knowledge, the game theory has not yet
been used in the physical layer security.

In this paper, we investigate the interaction between the
source and its friendly jammers using game theory. Al-
though the friendly jammers help the source by reducing
the data rate that is ”leaking” from the source to the ma-
licious node, at the same time they also reduce the useful
data rate from the source to the destination. Using well
chosen amounts of power from the friendly jammers, the
secrecy capacity can be maximized. In the game that we
define here, the source pays the jammers to interfere the
malicious eavesdropper, and therefore, to increase the se-
crecy capacity. The friendly jammers charge the source
with a certain price for the jamming the eavesdropper. One
could notice that there is a tradeoff for the proposed price:
If the price of a certain jammer is too low, its profit is
also low; if its price is too high, the source will buy from
the other jammers. In modeling the outcome of the above
games our analysis uses the Stackelberg type of game. Ini-
tially, the existence of equilibrium will be studied. Then, a
distributed algorithm will be proposed and its convergence
will be investigated. The outcome of the distributed algo-
rithm will be compared to the centralized genie aided so-
lution. Some implementation concerns are also discussed.
From the simulation results, we can see the efficiency of
friendly jamming and tradeoff for setting the price, the
source prefers buying service from only one jammer, and
the centralized scheme and the proposed game scheme has
similar performance.

As for the fancy title, the source is the main character,
the destination is a lovely girl, and her poor boyfriend re-
sembles the eavesdropper. A friend (jammer) or several
friends distract the boyfriend, so that the dating message
can be secretly transmitted from the main character (the
source) to the girl (the destination). The game is de-
fined as follows: How much these friends should charge
the main character for this “friendly” action. The authors
hope the fancy title can attract more attentions on this
research track for distributed solution of physical layer se-
curity problems.

The rest of the paper is organized as follows: In Section
II, the system model of physical layer security with friendly
jamming users is described. In Section III, the game models
are formulated, and the outcomes as well as properties of
the game are analyzed. Simulation results are shown in

Fig. 1. System Model for Physical Layer Security Game

Section IV and conclusions are drawn in Section V.

II. SYysTEM MODEL

We consider a network with a source, a destination, a ma-
licious eavesdropper node, and J friendly jammer nodes as
shown in Figure 1 '. The malicious node tries to eavesdrop
the transmitted data coming from the source node. When
the eavesdropper channel from the source to the malicious
node is a degraded version of the main source-destination
channel, the source and destination can exchange perfectly
secure messages at a non-zero rate. By transmitting a mes-
sage at a rate higher than the rate of the malicious node,
the malicious node can learn almost nothing about the mes-
sages from its observations. The maximum rate of secrecy
information from the source to its intended destination is
defined by the term secrecy capacity.

Suppose the source transmits with power Py. The chan-
nel gains from the source to the destination and from the
source to the malicious node are G54 and Gy, respectively.
Each friendly jammer i, s = 1,...,J transmits with power
P; and the channel gains from it to the destination and the
malicious node, are G;43 and Gy, respectively. For conve-
nience, we denote by J the set of indices {1,2,...,J}. If
the path loss model is used, the channel gain is given by
the distance to the negative power of the path loss coef-
ficient. The thermal noise for each channel is 02 and the
bandwidth is W. The channel capacity for the source to
the destination is

(1)

Cy = Wlog, <1 + PoGoa > .

o2+ Ziej PiGid
The channel capacity from the source to the malicious node

1S
POGsm
02+ZiejPiGim '

Cy = W10g2 (1 + (2)

In order to ensure that the eavesdropping malicious node
can obtain zero mutual information from the source, the
source should send its data with the secrecy capacity as

Cs=(Cr—Cy)" (3)

IMultiple source-destination pairs and multiple malicious nodes
case will be considered for our future work.



where (-)T = maz(-,0). We can see that with the increase
of the jamming power P;, both C; and C are reduced. The
questions are whether or not Cs can be increased, and how
to control the jamming power in a distributed manner. We
will try to solve the problems in the following section using
a game theoretical approach.

It is worth mentioning that the system model used in
this paper is additive white Gaussian noise (AWGN) chan-
nel, which can provide some insights on the game and in-
teractions between source and the friendly jammers. For
more sophisticated scenarios such as Rayleigh fading, it is
usually assumed that the source-destination channels are
known but only the channel statistics of source-jamming
channel are known. The problem is how to write (3), while
the rest of derivations of this paper can be performed in a
similar way.

III. GAME FOR PHYSICAL LAYER SECURITY

In this section, we study how to use game theory to an-
alyze the physical layer security. First, we define the game
between the source and friendly jammers. Next, we opti-
mize the source and jammer sides, respectively. Then, we
prove some properties of the proposed game. Finally, we
discuss some implementation concerns.

A. Game Definition

The source can be modeled as a buyer who wants to
optimize its secrecy capacity minus cost by modifying the
“service” (jamming power P;) from the friendly jammers,
ie.,

Source’s Game: max Uy = (amax(C; —Cs,0)— M), (4)

s.t. P < Prag,

where a is the gain per unit capacity, P,q. is the maximal
power that a jammer can provide, and M is the cost to pay
for the other friendly jamming nodes. Here

M = Zpipm (5)
ieJ

where p; is the price per unit power for the friendly jam-
mer, P; is the friendly jammer’s power, and 7 is the set of
friendly jammers. From (4) we note that the source will not
participate in the game if C; < Cy, or in other words, the
secrecy capacity is zero. For each jammer, U;(p;, P;(p;)), is
the utility function of the price and power bought by the
source. For the jammer’s (seller’s) utility, in this paper we
define the following utility

U; = piPiCia (6)

where ¢; > 1 is a constant to balance from the payment
p; P; from the source and the transmission cost P;. Notice
that P; is also a function of the vector of prices (p1,...pN)
since the power that the source will buy also depends on
the price that the friendly jammers ask. Hence, for each
friendly jammer, the optimization problem is

Friendly Jammer’s Game: max Uj. (7)
pi

The games for the source and friendly jammer are sim-
ilar to the games between buyers and sellers. In the next
two subsections, we analyze the optimal strategies for the
source and friendly jammers to maximize their own util-
ities. The analysis is similar to Stackelburg game in the
literature [17].

B. Source (Buyer) Side Analysis

The goal of the source as a buyer is to buy the optimal
amount of the power from the friendly jammers so as to
improve its secrecy capacity. We introducing the following
definitions:

A= PyGyy/o?, (8)
B = POGS77L/027 (9)
u; = Gig/o?, (10)
and
’Ui:G,'m/O'Z,iEJ. (11)
From (4), we have
A
Us=aW [log| 1+ ——=———
( ( 1+2j€jujpj>
+
—log 1+—B *ZP'P' (12)
1+Zjejvjpj e J5 0

For the source (buyer) size, we first analyze the case
where Cy > (5, i.e., the secrecy capacity is not zero before
the friendly jammers’ participation. By differentiating (4),
we have

au, aW Au;/1n 2
OF; (1+A+Zj€juij)(1+Zjejuij)
Bv;/1n2
n aW Bv;/In Cpi=0. (13)

(1 -+ B + Zjej Ujpj)(l =+ ZJEJ Ujpj)
Rearranging the above equation, we have

P} + F; 3P? + Fio(p)P? + Fi1(pi) Py + Fio(ps) =0, (14)

where
Fiz=(2+2a; + A)? + (2428 + B)?, (15)
2420+ A)(2+26;,+ B
Fia(pi) = ( i ) (16)
U;V;
Li KIL aW B A
+5+ = — —— =,
v; Uy PiU;V; (] (7
ﬂ,l(pi) = U?’UZ-Q pzufvf ) (17)
Fi,O(Pi) = "5 5 + 2 92 ) (18)

Uz vy piug vy



and

a; =Y _ GjaP;, (19)

j#i
Bi=> GimP;, (20)

J#i
Ki=0+a)(1+a; +A), (21)
Li=(1+8)(1+p;+ B), (22)
Ci = ui(2+ 2a; + A), (23)
D; =v;(2+28; + B). (24)

The solutions of the quartic can be expressed in closed
form but this is not the primary goal here. It is impor-
tant that the solution we are interested in is given by the
following function

Pi* = Pi*(pivAvB’ {uj}’ {Uj}7 {Pj}j7éi)7

which is a function of the friendly jammer’s price p; and
the other system parameters. Note that 0 < P; < Paz-
Since P; satisfies the polynomial function, we can have the
optimal strategy as

(25)

P} = min[max(FP;,0), Ppaz)- (26)

Because of the complexity of the closed form solution
of a quartic equation in (26), we also consider two special
cases: lower interference case and high interference case in
the following two subsubsections.

B.1 Interference at the Destination is much Smaller than
the Noise

Remember the definitions: A = PyGy/0?, B =
PoGepm/0?, u; = Giq/o? and v; = Gip/0?. Imagine a
situation in which all jammers are close to the malicious
node and far from the destination node. In that case the
interference from the jammers to the destination is very
small in comparison to the additive noise. Therefore by
omitting interfering terms, we have

+
. B
1+ 2 jeq viki

—> p;P;. (27)

VISV

Us = aW <log(1 + A) —log (1

Then by differentiating over the power the source would
like to buy and setting the result to zero, we have

oU,
op;

aW Buv;/1n2
(1 -+ B + Zjej ’Ujpj)(l -+ Zjej "Ujpj)

Rearranging the above equation, we get a polynomial func-
tion

2423, +B (14 8,)(1+ B+ 8)
2 7 i
P)i + v, Pl+ ’(}.2
K3 7
_ aWB (29)
piv; In 2 o

Solving the above equation we obtain a closed-form solu-
tion

_2+2/6i+B

f 90; + (30)
(2+28;+B)* (1+B8)Q1+B+p;) , aWB
41)1-2 01-2 piv; In 2

V Y2

Finally, by comparing P with the power under the
boundary conditions (P; = 0, P, = P4 and Cs = 0),
the optimal P in the low SNR region can be obtained.

K3

B.2 One Jammer with Interference that is much Higher
than the Noise but much Smaller than the Received
Power at the Destination and the Malicious Node

In this special case, the interference from the jammer is
much higher than the additive noise but much smaller than
the power of the received signal at the destination and the
malicious node. In other words, that means 1 << u1 P; <<
A and 1 << v1 P, << B. Therefore, the utility function of
the source is given by

A 1 1+
ur Py o8

In order to find the optimal power to buy, similarly we
calculate

Us ~aW <log (1 +

oU, aWA aWB
= —p; =0. 4
0B~ wp? T upz =0 (34)
Hence
B A D
Pf:,/“W(—>=,/1. (35)
P1 U1 U p1

From this equation we get the optimal closed-form solution
P;, and similarly by comparing P} with the power under
the boundary conditions (P = 0, P; = P4, and Cs = 0),
we can obtain the optimal solution of the source for the

this special case.

C. Friendly Jammer (Seller) Side Analysis

From (25), we can see that the power that a source would
buy is related to the prices that the friendly jammers set. In
this subsection, we study how the friendly jammers can set
the optimal price to maximize its utility. By differentiating

) the friendly jammer’s utility in (6) and setting it to zero,

we have
aU; oP;
© = (P) 4 pici(P) T = =0. 36
S = (P 4 pies(P) 1 (36)
This is equivalent to
o1 e or;
(Pt (Pi + piCi - s ) =0 (37)



This happens either if P = 0 (the source does not buy
anything from the friendly jammer) or if
oP;

3 — O
Op;

P} 4 pic; - (38)

From the closed form solution of P}, the solution of p} will
be a function given as

p: = pr (O-Qa Gsd7 Gsma {Gid}7 {sz})

Notice that p} should be positive. Otherwise, the friendly
jammer would not play.

(39)

D. Properties

In this subsection, we prove some properties of the pro-
posed game. First, we prove that the power is monotonous
function of the price under the two extreme cases. The
properties can help for the proof of equilibrium existence
in the later part of this subsection.

Property 1: Under the two special cases, the optimal
power consumption P for friendly jammer ¢ is monotonous
with its price p;, when the other friendly jammers prices
are fixed. The proof is straightforward from (31) and (35).

We investigate the following analysis of the relation be-
tween the price and power. We find out that the friendly
jammer power P; bought from the source is convex in its
own price p; under some conditions. To prove this we need
to check whether the second derivative 9*P;/0p? < 0.

In the first special case in which the interference is small,
we have the first order derivative as

Op; 2pf,/w¢+ 127:

and the second order derivative as

62Pi* - Z; 1
2 1/2 B LW
I (wi+2) 1(me 4

The above equation is greater than zero when p; is small.
This means when the interference is small and the price is
small, the power is convex as a function of the price.

In the second special case in which the interference is
severe, we have the first order derivative

(41)

OP* 1 ~3/2
t = _—\/D 42
Op: B 1P ( )
and the second order derivative as
o’rPr 3 _5/2

This means when the interference is severe, the power is a
convex function of the price.

Next, we investigate the equilibrium of the proposed
game. In other word, no user can improve the its util-
ity by changing its own strategy only. We first define the
Stackelberg equilibrium as follow:

Definition 1: PF and pF are the Stackelberg equilib-
rium of the proposed game, if when p; is fixed,

U,({P°F}) = sup U({P}), YieJ (44)
Pras>{PSE}>0Vi
and when P; is fixed,
Ui(pr) =supU;(p;), Vie J. (45)

pi
Finally, from the analysis in the previous two subsections,
we can shown the following property for the proposed game.
Property 2: The pair of {P}Y | in (26) and {p;}¥, in
(39) is the Stackelberg equilibrium for the proposed game.

E. Distributed Algorithm and Convergence

In this subsection, we study how the distributed game
can converge to the Stackelberg equilibrium defined in the
above subsection. After rearranging (36), we have

p*
b= L) = 0L
Ci Op;

(46)

where price vector p = [p1,...,pn]T and I;(p) is the price
update function. Notice that the optimal power P} is a
function of price vector p. The information for the update
can be obtained from the source node. This is similar to the
distributed power control [24]. The update of the friendly
jammers’ prices can be written in a vector form as

Distributed Algorithm: p(¢ + 1) = I(p(t)), (47)
where I = [I,...,Iyx]|", and the iteration is from time t
to time ¢ + 1. Next, we show that the convergence of the
proposed scheme using the update in (47) by proving that
the price update function in (47) is a standard function [22]
defined as

Definition 2: A function I(p) is standard, if for all p >
0, the following properties are satisfied
1. Positivity: p > 0,

2. Monotonicity: if p > p’, then I(p) > I(p’), or I(p) <
I(p'),
3. Scalability: For all n > 1, nI(p) > I(np).

In [22], it has been proved that the price will converge
to the fixed point (i.e. the Stackelberg equilibrium in our
case) from any feasible initial price vector.

The positivity is very easy to prove. If the price p; in-
creases, the source would buy less from the i*" friendly
jammer. As a result, %—IZ in (36) is negative, and we prove
positivity p; = I;(p) > 0.

For monotonicity and scalability, we can only show the
two special cases. For the low interference case, from (31)
it is obvious that

(&)
Ii (p) = - oP;
Ci Op;

2\/wip? + zipi(qipi +

CiZg

(48)

wip? + 2ip;)




Fig. 2. Secrecy Capacity vs. Jamming Power

which is monotonically increasing in p;. For scalability, we
have

Li(np) _ wip; + zipi /n(qipi + \/wipi + zipi/n) <1
nli(p) Vwip? + zipi(qipi + Jwib? + zipi) ’
(49)
since n > 1.
For the large interference case, from (35) we have
() 2p;
Li(p) = =35 = (50)
Cop ©

which is monotonically increasing in p; and scalable.

Based on the above analysis, we can conclude that under
the two special cases, the game will converge to the Stack-
elberg equilibrium from any arbitrary feasible solution. For
the other cases, the proof cannot be mathematically track-
able. From the observation in the simulations, the price
and power indeed converge.

F. Implementation Discussion

There are several implementation concerns for the pro-
posed scheme. First, the channel information from the
source to the malicious eavesdropper might not be known
or accurately known. Under this condition, the secrecy ca-
pacity formula should be rewritten considering the uncer-
tainty. The close form solution might be hard to be found,
some numerical solutions might be able to be obtained.
Moreover, some side information can also be helpful. For
example, if the direction of arrival is known, multiple an-
tenna techniques can be employed such as in [12].

Second, the proposed scheme need iteratively updating
the price and power information. A natural question arises
that if the distributed scheme has less signalling than the
centralize scheme. The comparison is similar to distributed
and centralized power control in the literature [22, 24].
Since the channel condition is continuously changing, the
distributed solution only needs to update the difference of
the parameters such as power and price to be adaptive,

Fig. 3. How much Power the Source Would Buy vs. Price

while the centralized scheme requires all channel informa-
tion in each time period. As a result, the distributed solu-
tion has a clear advantage and dominates the current and
future wireless network design. For example, the power
control for cellular networks, the open loop power control
is done only once during the link initialization, while the
close loop power control (distributed power allocation such
as [22]) is performed 1500 times for UMTS and 800 times
for CDMA2000.

Finally, for the multi-source-destination-pair multi-
eavesdropper case, there are two possible choices to solve
the problem. First, we can use clustering method to divide
the network into sub-networks, and then employ the single-
source-destination pair and multiple-friendly-jammer solu-
tion proposed in this paper. Or if we consider the jamming
power can be useful for multiple eavesdroppers, some tech-
niques such as double auction can be investigated. The
detailed discussion is beyond the scope of this paper and
would be considered in our future research.

IV. SIMULATION RESULTS

The simulation is set up as follows: The source and
friendly jammer have power of 0.02, the bandwidth is 1,
the noise level is 1078, the propagation loss factor is 3,
AWGN channel is assumed. the source, destination, and
eavesdropper are located at the coordinate (0,0), (100,0),
and (50,50), respectively. Here we select a = 2 for the
friendly jammer utility in (6).

For single friendly jammer case, we show the simula-
tion with the friendly jammer at the location of (50,75)
and (10,75). In Figure 2, we show the secrecy capacity as
a function of jamming power. We can see that with the
increase of the jamming power, the secrecy capacity first
increases and then decreases. This is because the jamming
power has different effects on Cy and Cs. So there is an op-
timal point for the jamming power. Also the optimal point
depends on the location of the friendly jammer, and the
friendly jammer close to the eavesdropper is more effective
to improve the secrecy capacity. Moreover, notice that the



Fig. 4. Us vs. Prices of Two Users

Fig. 5. Uj vs. Prices of Two Users

curve is not convex and not concave. In Figure 3, we show
the how much power the source buys from the jammer as a
function of the requested price. We can see that the power
is reduced if the price goes high. At some point, the source
would stop buying the power. So there is a tradeoff for set-
ting the price, i.e., if the price too high, the source would
buy less power or even would buy nothing.

For the two-user case, we set up the following simula-
tions. Malicious node is located at (50,90), friendly jam-
mer one is located at (50,50), and friendly jammer two is
located at (50,75). In Figure 4, Figure 5, and Figure 6, we
show the source’s utility Ug, jammer one’s utility Uy, and
jammer two’s utility Us as function of both users’ price,
respectively. We can see that the source would buy service
from only one of the friendly jammers. If the friendly jam-
mer asks too low price, the jammer’s utility is very low. On
the other hand, if the jammer asks too high price, it risks
the situation in which the source would buy the service
from the other friendly jammer. There is an optimal price
for each friendly jammer to ask, and the source would al-

Fig. 6. Uz vs. Prices of Two Users

ways select the one that can provide the best performance
improvement.

V. CONCLUSIONS

Physical layer security is an emerging security technique
that is an alternative for traditional cryptographic-based
protocols to achieves perfect secrecy capacity as eavesdrop-
pers obtain zero information. Jamming has been shown
in the literature to effectively improve secrecy capacity.
In this paper, we investigate the interaction between the
source and friendly jammers using the game theory so as
to have a distributed solution. The source pays the friendly
jammers to interfere the malicious eavesdropper so as to in-
crease the secrecy capacity. The friendly jammers charge
the source with a price for the jamming. To analyze the
game outcome, we investigate the Stackelburg game and
construct the distributed algorithm. Some properties such
as equilibrium and convergence are analyzed. From the
simulation results, we can see the following points. First,
there is a tradeoff for the price: if the price is too low,
the profit is low; if the price is too high, the source would
not buy or buy from the other jammers. Second, for the
multiple jammer case, the source would buy service from
only one jammer. Overall, the proposed game theoretical
scheme can achieve a good performance with distributed
implementation.
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