Unsupervised classification of skeletal fibers using diffusion maps

Abstract : In this paper, we propose an application of diffusion maps to fiber tract clustering in the human skeletal muscle. To this end, we define a metric between fiber tracts that encompasses both diffusion and localization information. This metric is incorporated in the diffusion maps framework and clustering is done in the embedding space using k-means. Experimental validation of the method is performed over a dataset of diffusion tensor images of the calf muscle of thirty subjects and comparison is done with respect to ground-truth segmentation provided by an expert.
Liste complète des métadonnées

Cited literature [14 references]  Display  Hide  Download

https://hal-supelec.archives-ouvertes.fr/hal-00424543
Contributor : Karine El Rassi <>
Submitted on : Friday, October 16, 2009 - 11:52:03 AM
Last modification on : Monday, March 25, 2019 - 5:38:40 PM
Document(s) archivé(s) le : Tuesday, June 15, 2010 - 8:49:24 PM

File

Neji_ISBI09.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00424543, version 1

Collections

Citation

Radhouène Neji, Georg Langs, Jean-François Deux, Mezri Maatoouk, Alain Rahmouni, et al.. Unsupervised classification of skeletal fibers using diffusion maps. IEEE International Symposium on Biomedical Imaging : from Nano to Macro, Jun 2009, Boston, United States. pp.410-413. ⟨hal-00424543⟩

Share

Metrics

Record views

814

Files downloads

1513