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1. Introduction 
 
Throughout this paper ��, ��, … , �� are matrices with columns defined by centered variables 
observed on the same set of n individuals and ��, ��, … , �� the associated kernel matrices. Let us 
note �	 the number of variables for the block �	. We are interested in studying the relation between 
 
blocks of variables ��, ��, … , �� even though those data sets live in different spaces. We achieve this 
by projecting the 
 blocks onto 
 separate directions specified by vector ��, ��, … , ��, to obtain 
 
univariate variables on which “link” (such as covariance) can be computed easily. In this paper is 
presented a kernel version of a companion paper entitled “A criterion based PLS approach to 
structural equation modelling” [Tenenhaus and Tenenhaus, 2009] which will be presented during the 
PLS’09 conference. The paper is organized as follows: the first part briefly introduces the primal 
formulation of the proposed method and the second part is devoted to its dual formulation.  
 

2. The general optimization problem (primal form) 
 
In this paper, the following general problem is considered: 
 

���, ��, … , �� = argmax��,��,…,��  � � ��	  � ���� ����, �	�	!"�
	#�

�
�#�  

 

subject to the constraints: :  1 − &	!��' �	�	! + &	)�	)� = 1,    j =1, …, J  

(1) 

 
where �*+, =  + (Horst Scheme), �*+, =  +� (factorial scheme) or �*+, =  |+| (centroïd scheme).  
 
The regularisation parameters &	 ∈ /0, 11, j =1, …, J control the stability of the solution (specifically 
useful in a high dimensional block context) and interpolate smoothly between the maximisation of 
the covariance (all &	23 = 1) and the maximisation of the correlation (all &	23 = 0). The 
 × 
 design 

matrix *5,�	 = ��	 equals to 1 if the blocks iX  and jX  are connected and to 0 otherwise allows to 

immediatly extend the multiblock data analysis framework to the structural equation modelling one 
by limiting the sommation to connected blocks. For sake of simplicity, in this part of the paper, we 
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focus our presentation on the Horst scheme. Applying the Lagrangian multiplier technique to the 
optimization of (1) gives us 
 stationary equations: 
 

�� = 167�3��8�9���37� :*1 − &�, 1; ��3�� + &�<=>?@@@@@@A@@@@@@BC>
D

9�
��3 � ��	�	�	

�
	#�?@@A@@BE>

,    F = 1, … , 
 
 
It is noteworthy that 8� is well-conditionned (even in high dimensional block(s) context) since the 

empirical covariance matrices 
�G ��3��  F = 1, … , 
 are shrunk gradually towards the identity matrices 

and are singular and thus invertible. To solve this optimization problem is applied an iterative “PLS 
style” algorithm based on the Wold procedure [Wold, 1982] which is monotonically convergent that 
means that the bounded criterion to be maximized is increasing at each step of the procedure 
[Hanafi, 2007]. However, it is still remain difficult to apply such a Wold algorithm in a high 
dimensional block context due to the inversion of matrices 8� of dimension �� × ��, F = 1, … , 
 and 
we propose in the next section to reformulate this algorithm in its dual form leading to the Kernel 
PLS path modelling. 
 

3. Kernel PLS path modelling 
 
Let us assume that �	 can be expressed as a linear combination of the observations of block �	 
(which is always possible). Throughout this section let us note �	 = �	3H	 and �	 = �	�	3 the matrix 
of inner product between pairs of observations of block �	 (Gram matrix). We consider also the QR-
decomposition of the matrix �	3 = I	J	  where I	 is an orthonormal matrix and J	 a rank �	! × ; 
upper triangular matrix. This gives the following decomposition for the kernel matrix �	 = J	3J	. As 
suggested by [Bach and Jordan, 2002 ; Shawe-Taylor and Cristianini, 2004], an incomplete cholesky 
decomposition of �	 is used to obtain J	.  
 
Now the primal formulation of the general optimisation problem described previously can be 
formulated in its dual form as follows: 

�H�, H�, … , H� = argmaxM�,M�,…,M�  � � ��	� ���� ����3H�, �	�	3H	!"�
	#�

�
�#�   

 

subject to the constraints: :  1 − &	!��' �	�	3H	! + &	)�	3H	)� = 1,    N = 1, … , 
 
 

 
To simplify the presentation, we focus on the Horst Scheme (�*+, =  + , 
 ⇒   �H�, H�, … , H� = argmaxM�,M�,…,M�  �G ∑ ∑ ��	H�3���	H	�	#���#�   

 

subject to the constraints : H	3 Q 1 − &	! �G �	� + &	�	R H	 = 1,    j =1, …, J 
 
 

 
We note that this maximization problem is expressed only in terms of kernel matrices. The 
regularisation parameters not only makes this optimisation problem well posed numerically but also 
provide control over the capacity of the function space where the solution is sought. The larger the 
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values of &	 are, the less sensitive the method to the input data is and the more stable (less prone to 
finding spurious relations) the solution becomes. 
 
 ⟺   �H�, H�, … , H� = argmaxM�,M�,…,M�  �G ∑ ∑ H�3J�3J�J	3J	H	�	#���#�   

subject to the constraints : H	3 Q 1 − &	! �G J	3J	J	3J	 + &	J	3J	R H	 = 1,    j =1, …, J 
 
 

 
Let us note T	 = J	H	 and ;	 = rank �	! 
 ⟺    �T�, T�, … , T� = argmaxU�,U�,…,U�  �G ∑ ∑ T�3J�J	3T	�	#���#�  (2) 

 

subject to the constraints : T	3 Q 1 − &	! �G J	J	3 + &	<GVR T	 = 1,    j =1, …, J 
 

(3) 
 

 
A 3-step procedure is proposed to maximize (2) subject to (3): 
 
 

(1) Construct the Lagrangian function related to the maximization problem. 
 

W = � � ��	 1;
�

	#�
�

�#� T�3J�J	3T	 − � X� Y*1 − &�, 1; T�3J�J�3T� + &�T�3T� − 1Z�
�#�  

 
where X�, F = 1, … , 
 are the Lagrangian multiplier. 
 
(2) Define stationary equations by cancelling and simplifying the derivatives of the 

Lagrangian function. 
 

T� = 1[7F′J�3]F−1J�7F
:*1 − &�, 1; J�J�3 + &�<G>?@@@@@@A@@@@@@B^>

D
9�

J� � ��	J	3T	
�

	#�?@@A@@B7F
,    F = 1, … , 
 

 
 

(3) Find a solution of the 
 stationary equations by using a PLS style iterative procedure 
(derived to the Wold procedure which guaranty the monotonic convergence). 

 
It is worth pointing out that for specific values of the regularization parameters, the proposed method 
provides as particular cases (and among others): 

• For the 2 blocks cases: Kernel PLS [Rosipal et al., 2001] (&� = &� = 1), Kernel Redundancy 
Analysis [Takane and Hwang, 2007] which is equivalent to Kernel PLS for discrimination 
[Rosipal et al., 2003] (&� = 1 and &� = &), Kernel Canonical Correlation Analysis [e.g. Bach 
and Jordan, 2002] (&� = &� and &� = &�). 

• For the J blocks cases: a “Horst” Generalized Kernel CCA with the flavour of the one 
proposed by [Bach and Jordan, 2002 ; Shawe-Taylor and Cristianini, 2004] (all &	s′ = &	 ; 
Horst scheme).  
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Moreover, our general optimisation problem provides a “regularized” kernel extension of the 
Kettenring’s generalized CCA (all &	2′ = &	 and Factorial scheme).   
 

4. Conclusion 
 
In this paper we present a very general optimization problem covering a large spectrum of methods. 
This paper provides a criterion point of view of the PLS path modelling framework.  
To the best of our knowledge, all the Kernel CCA version proposed by the machine learning 
community does not consider other scheme than the Horst one. In this paper, we explore the factorial 
and the centroïd scheme which sound more reasonable when the number of block is greater than 2. 
Moreover, the introduction of the design matrix allows analysing data where all blocks are not 
necessarily connected.  
To conclude this paper, we note that by using non linear kernel such as Gaussian or polynomial 
kernel, we can assess non linear relation between blocks. 
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