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Abstract—This paper introduces two new formulas to de-
rive explicit capacity expressions of a class of communication
schemes, which include single-cell multi-user MIMO and single-
user MIMO with multi-cell interference. The extension of a
classical theorem from Silverstein allows us to assume a channel

Kronecker model between the base stations and the cellular
terminals, provided that they all embed a large number of
antennas. As an introductory example, we study the single-
user MIMO setting with multi-cell interference, in the downlink.
We provide new asymptotic capacity formulas when single-user
decoding of the incoming data or MMSE decoding are used.
Simulations are shown to corroborate the theoretical claims, even
when the number of transmit/receive antennas is not very large.

I. INTRODUCTION

In the last decade, while mobile networks were expected

to run out of power and frequency resources, Foschini [3]

and Telatar [4] introduced the notion of MIMO (multiple

input multiple output) systems and predicted a growth of

capacity performance of min(nR, nT) times the single antenna

capacity for an nT-antenna transmitter and an nR-antenna

receiver. However, this tremendous multiplexing gain can

only be achieved for large SINR (signal-to-interference plus

noise ratio) and without signal correlation at the channel

ends. In case of correlation due to antenna spacing or to

poorly scattering environments, the theoretically achievable

gains are still not completely available. Moreover, in present

multi-cell wireless mobile networks, neither base stations nor

users cooperate; this leaves the device manufacturers with

the dilemma of increasing the signal processing capabilities

of the transmit/receive units to result into non significant

throughput gains when adjacent cells interfere one another.

Besides, due to limited computational constraints, suboptimal

linear techniques such as MMSE (minimum mean square

error) decoding are used at the receiver [5], in place of optimal

single-user decoders.

In this work, we derive the per-antenna channel capacity

of MMSE receivers against optimal single-user decoders in

multi-cell networks, when the number of antennas at the

transmitters and receivers is large. The capacity here is defined

as the supremum of the achievable rates between a base

station and a specific user (in uplink or in downlink) interfered

by other cells. We model all transmission channels by the

well-spread Kronecker model [6]. Few major contributions

propose to study the capacity performance of point-to-point

communications with interference. In [9], the authors carry out

the performance analysis of TDMA-based networks with inter-

cell interference. In [10], a random matrix approach is used to

study large CDMA-based networks with inter-cell interference.

In the MIMO context, [7] provides an analytic solution to

our problem in two-cell networks, using replica methods [8].

These methods are however tedious since they require heavy

combinatorial calculus. We propose in the following a more

direct approach, based on analytical tools of random matrix

theory. Note also that [13] provides a deterministic capacity

expression in our context, when the receive covariance matri-

ces Rk are assumed to share the same eigenspace1.

Although this specific work is dedicated to the study of

point-to-point MIMO systems with multi-cell interference, the

potential applications to the mathematical results we introduce

cover a larger class of problems, in which channel capacities

express as the log determinant of a sum of Gram matrices

XiX
H

i , where Xi is a large matrix modelled as Kronecker.

For example, beside the uplink/downlink multi-cell single-

user MIMO, our results are applicable to single-cell multi-

user MIMO communications in the uplink, evaluation of the

capacity region of multiple access channels and broadcast

channels [2].

The remainder of this work is structured as follows: in

Section II, we provide mathematical preliminaries and we

introduce a new important theorem, for which we provide a

sketch of proof. In Section III, we introduce the system model.

In Section IV, the point-to-point capacity of the channel

between a base station and a user, interfered by other cells,

is derived when single-user decoding or MMSE decoding are

performed at the receiver. In Section V, we provide simulation

results of the previously derived theoretical formulas. Finally,

in Section VI, we give our conclusions.

Notation: In the following, boldface lower-case symbols

represent vectors, capital boldface characters denote matrices

(IN is the N × N identity matrix). Xij denotes the (i, j)
entry of X. The Hermitian transpose is denoted (·)H. The

1this assumption is too strong for our current study since it boils down to
supposing that all entities have the same geometrical antenna pattern and that
transmit/receive energy comes from the same solid angle for all users.



operators trX, |X| and ‖X‖ represent the trace, determinant

and spectral norm of matrix X, respectively. The symbol

xn
a.s.
−→ x denotes almost sure convergence of xn to x.

The notation FY stands for the empirical distribution of the

eigenvalues of the Hermitian matrix Y.

II. MATHEMATICAL PRELIMINARIES

Part of this work is dedicated to the introduction of a

novel theorem, from which the multi-cell downlink and uplink

capacities will be given compact expressions. This theorem

generalizes Silverstein and Bai’s formula [1] to multiple ran-

dom matrices with separable variance profiles, i.e. following

the Kronecker model, and unfolds as follows,

Theorem 1: Let K , N ∈ N be some positive integers. Let

BN =

K
∑

k=1

R
1
2

k XkTkX
H

kR
1
2

k (1)

be an N × N matrix with the following hypothesis for all

k ∈ {1, . . . , K},

1) Tk is nk×nk Hermitian nonnegative definite, nk ∈ N∗,

qith unit normalized trace,

2) R
1
2

k is the N ×N Hermitian nonnegative definite square

root of the nonnegative definite matrix Rk with unit

normalized trace,

3) Xk is N ×nk with i.i.d. complex Gaussian entries with

variance 1/nk.

For k ∈ {1, . . . , K}, let ck = nk/N . Also denote, for z ∈
C \ R+, mN (z) = 1

N
(BN − zIN )−1. Then, as all nk and N

grow large (while K is fixed), with ratio ck

mN (z) − m
(0)
N (z)

a.s.
−→ 0 (2)

where

m
(0)
N (z) =

1

N
tr

(

K
∑

k=1

∫

τkdFTk(τk)

1 + τk

ck
ek(z)

Rk − zIN

)−1

(3)

and the set of functions {ei(z)}, i ∈ {1, . . . , K}, form the

unique solution to the K equations

ei(z) =
1

N
trRi

(

K
∑

k=1

∫

τkdFTk(τk)

1 + τk

ck
ek(z)

Rk − zIN

)−1

(4)

such that sgn(ℑ[ei(z)]) = sgn(ℑ[z]).
The function mN(z) is the Stieltjes transform of the ran-

dom variable with cumulative distribution function FBN . The

complete proof of a more general expression of this theorem

is given in an extended version of the present article [2].

Remark 1: This theorem allows us to derive Stieltjes trans-

forms of large matrices independently of the realization of

the Xk matrices. In wireless communications, this allows one

to characterize the performances of a multi-user or multi-

cell communication based only on the transmit and receive

correlations Rk and Tk. This further helps to estimate channel

capacity thanks to the Shannon transform,

Theorem 2: Let BN be a random Hermitian matrix as

defined in Theorem 1 with the additional assumption that, for

all N , nk, tr(Tk) = nk, tr(Rk) = N , and let x > 0. Then,

for large N , nk, V(x) − V(0)(x)
a.s.
−→ 0, where

V(x) =

∫

log

(

1 +
b

x

)

dFBN (b) (5)

and

V
(0)(x) =

1

N
log det

(

IN +
1

x

K
∑

k=1

Rk

∫

τkdFTk(τk)

1 + ckek(−x)τk

)

+

K
∑

k=1

1

ck

∫

log (1 + ckek(−x)τk) dFTk(τk)

+ x · m
(0)
N (−x) − 1 (6)

A proof of this result (with less stringent hypothesis) is

provided in [2]. From both results, one can derive the capacity

formulation of a large range of multi-user/multi-cell network

models. In the following, we cast attention on single-cell

networks with multi-cell interference.

III. SYSTEM MODEL

In this work we derive capacity expressions of wireless

channels between a multi-antenna transmitter and a multi-

antenna receiver, the latter of which is interfered by sev-

eral multi-antenna transmitters. This scheme is well-suited to

multi-cell wireless networks with orthogonal intra-cell and

interfering inter-cell transmissions, both in downlink and in

uplink. The following scenarios encompass in particular

• multi-cell uplink: the base station of a cell indexed by

i ∈ {1, . . . , K} receives data from one user in this cell2

and is interfered by K − 1 users transmitting on the

same physical resource from remote cells indexed by

j ∈ {1, . . . , K}, j 6= i.
• multi-cell downlink: the user being allocated a given

time/frequency resource in a cell indexed by i ∈
{1, . . . , K} receives data from its dedicated base-station

and is interfered by K − 1 base stations in neighboring

cells indexed by j ∈ {1, . . . , K}, j 6= i.

In the following, in order not to confuse both scenarios, only

the downlink scheme is considered. However, one must keep

in mind that the provided results can easily be adapted to the

uplink case.

Consider a wireless mobile network with K ≥ 1 cells

indexed from 1 to K , controlled by non-physically connected

base stations. On a particular time/frequency resource, each

base station serves only one user; therefore the base station

and the user of cell j will also be indexed by j. Without loss

of generality, we focus our attention on user 1, equipped with

nR ≫ K antennas and hereafter referred to as the user or the

receiver. Every base station j ∈ {1, . . . , K} is equipped with

nTj
≫ K antennas. We additionally denote cj = nTj

/nR.

Denote sj ∈ C
nTj , E[sjs

H

j ] = InTj
, the signal transmitted

by user j, y ∈ CnR the signal received by the base station

2this user is allocated a given time/frequency resource, which is orthogonal
to time/frequency resources of the other users in the cell; e.g. the multi-access
protocol is OFDMA.



and n ∼ CN(0, σ2InR) the noise vector received at the base

station. The fading MIMO channel between base station j and

the user is denoted Hj ∈ C
nR×nTj . Moreover we assume that

Hj has a separable variance profile, i.e. can be decomposed

as

Hj = R
1
2

j XjT
1
2

j (7)

with Rj ∈ C
nR×nR the (Hermitian) correlation matrix at the

receiver with respect to the channel Hj , Tj ∈ C
nTj

×nTj

the correlation matrix at transmitter j and Xj ∈ C
nR×nTj a

random matrix with Gaussian independent entries of variance

1/nTj
.

Remark 2: Note that in this model, and contrary to what

is often assumed, Rj , the correlation matrix at the receiver,

explicitly depends on j. In the uplink scenario, this assumption

is of particular relevance in the sense that base stations are usu-

ally placed in areas clear of scatterers. In these circumstances,

the solid angle from which the signals from user j originate

influences the signal correlation at the receive antenna array.

Hence the dependence of the receive correlation matrices on

j. Note moreover that, in this model, the transmit power

assumption E[sjs
H

j ] = InTj
is not restrictive in the sense

that the transmit power correlation of user j can be included

into the matrix Tj . However, the Kronecker model has two

major drawbacks: (i) the inner matrix Xj implicitly assumes a

high density of scatterers3 in the communication link and (ii)

the correlations on both sides must be inter-independent and

independent of the realizations of Xj , which is inaccurate to

some extent.

With the assumptions above, the communication model

unfolds

y = H1s1 +
K
∑

j=2

Hjsj + n (8)

where s1 is the useful signal (from base station 1) and sj ,

j ≥ 2, constitute interfering signals.

IV. MULTI-CELL MIMO CAPACITY

A. Optimal Decoding

If the receiving user considers the signals from the K −
1 interfering transmitters as pure noise and knows the exact

value of the SNR (signal-to-noise ratio) σ−2, then base station

1 can transmit with arbitrarily low decoding error at a per-

receive antenna rate CSU(σ2) given by

CSU(σ2) =
1

nR
log2 |InR +

1

σ2

K
∑

j=1

HjH
H

j |

−
1

nR
log2 |InR +

1

σ2

K
∑

j=2

HjH
H

j | (9)

Assume that nR and the nTi
, i ∈ {1, . . . , K}, are large

compared to K and such that no eigenvalue of Ri or Ti is too

3the number and distance between scatterers must be of the same order as
the number and distance between the transmit and receive antennas.

large. As in Theorem 1, we define the function mi,(0) as the

approximated Stieltjes transforms of
∑K

j=i HjH
H

j , i ∈ {1, 2},

mi,(0)(z) =
1

nR
tr

(

K
∑

k=i

∫

tkdFTk(tk)

1 + tk

ck
ei

k(z)
Rj − zInR

)−1

(10)

where, for all i ∈ {1, . . . , K}, ei
j(z) is solution of the fixed-

point equation

ei
j(z) =

1

nR
trRj

(

K
∑

k=1

∫

tkdFTk(tk)

1 + tk

ck
ei

k(z)
Rk − zI

)−1

(11)

From Theorem 2, we then have approximately

CSU(σ2) =
1

nR
log det

(

I +
1

σ2

K
∑

k=1

Rk

∫

τkdFTk(τk)

1 + cke1
k(−σ2)τk

)

−
1

nR
log det

(

I +
1

σ2

K
∑

k=2

Rk

∫

τkdFTk(τk)

1 + cke2
k(−σ2)τk

)

+
K
∑

k=1

1

ck

∫

log
(

1 + cke1
k(−σ2)τk

)

dFTk(τk)

−

K
∑

k=2

1

ck

∫

log
(

1 + cke2
k(−σ2)τk

)

dFTk(τk)

+ σ2 · [m1,(0)(−σ2) − m2,(0)(−σ2)] (12)

However, this capacity expression assumes no specific

power allocation at the transmitter. If the transmit covariance

matrices Tj are replaced by T
1
2

j PjT
1
2

j with Pj the signal

covariance matrix at transmitter j, we remark that (9) can be

rewritten as

CSU(σ2) =
1

nR
log |I+

1

σ2
A−

1
2 R

1
2
1 X1T

1
2
1 P1T

1
2
1 XH

1 R
1
2
1 A−

1
2 |

(13)

with A = InR + 1
σ2

∑

j>1 HjPjH
H

j .

From [12], the optimal power allocation for base station 1
consists in aligning the eigenvectors of P1 to those of T1 and

in choosing the eigenvalues p1, . . . , pnT1
as







pi = 0 (1/αi) − 1 ≤ 1
nT1

∑nT1

l=1 (1 − αl)

pi = 1−αi

1
nT1

P

nT1
l=1 (1−αl)

otherwise

(14)

for α−1
i equal to

1 +
1

σ2
hH

i A−
1
2

[

IN +
1

σ2
A−

1
2 H−iP1H

H

−iA
−

1
2

]

−1

A−
1
2 hi

(15)

hi is the ith column of H1, and H−i is H1 with column i
removed.

Denoting hi = R
1
2
1 xi, we have xi centered Gaussian

with covariance T1ii
/nT1InR and independent of

R
1
2
1 A−

1
2

[

IN + 1
σ2 A

−
1
2 H−iP1H

H

−iA
−

1
2

]

−1

A−
1
2 R

1
2
1 .



Therefore, asymptotically on nR, from lemmas in [1],

αi =

(

1 +
T1ii

σ2nR
trR1

[

A +
1

σ2
H−iP1H

H

−i

]

−1
)

−1

(16)

=

(

1 +
T1ii

σ2nR
trR1

[

A +
1

σ2
H1P1H

H

1

]

−1
)

−1

(17)

=






1 +

T1ii

σ2nR
trR1



I +
1

σ2

K
∑

j=1

HjPjH
H

j





−1






−1

(18)

=
(

1 + T1ii
e1
1(−σ2)

)

−1
(19)

This leads to the power allocation










pi = 0, T1ii
e1
1(−σ2) ≤ 1

nT1

∑nT1

l=1 1 −
(

1 + T1ll
e1
1(−σ2)

)

−1

pi =
1−(1+T1ii

e1
1(−σ2))−1

1
nT1

P

nT1
l=1 1−(1+T1ll

e1
1(−σ2))

−1 otherwise

(20)

In most cases however, the diagonal entries of T1 all equal

1, and therefore the optimal power allocation policy is uniform

array power allocation.

B. MMSE Decoder

Achieving CSU requires non-linear processing at the re-

ceiver, such as MMSE successive interference cancellation.

A suboptimal linear technique, the MMSE decoder, is often

used instead. The communication model in this case reads

y =





k
∑

j=1

HjH
H

j + σ2InR





−1

HH

1





k
∑

j=1

Hjsj + n



 (21)

and each entry of y will be processed individually.

This technique makes it possible to transmit data reliably at

any rate inferior to the per-antenna MMSE capacity CMMSE,

CMMSE(σ2) =
1

nR

nT1
∑

i=1

log2(1 + γi) (22)

where, denoting hj ∈ C
nTj the jth column of H1 and

R
1
2
1 xj = hj , the SINR γi expresses as

γi =
hH

i

(

∑K

j=1 HjH
H

j + σ2InR

)

−1

hi

1 − hH

i

(

∑K

j=1 HjH
H

j + σ2InR

)

−1

hi

(23)

= hH

i





K
∑

j=1

HjH
H

j − hih
H

i + σ2InR





−1

hi (24)

= xH

i R
1
2

i





K
∑

j=1

HjH
H

j − hih
H

i + σ2InR





−1

R
1
2

i xi (25)

where Equation (24) comes from a direct application of the

matrix inversion lemma. With these notations, xi has i.i.d.

complex Gaussian entries with variance T1ii
/nTi

and the inner

matrix of the right-hand side of (25) is independent of xi (since

the entries of H1H
H

1 − hih
H

i are independent of the entries

hi). Applying Lemma 3.1 in [1], for nTi
large, approximately

γi =
T1ii

nT1

trR1





K
∑

j=1

HjH
H

j − hih
H

i + σ2InR





−1

(26)

From Lemma 2.1 in [11], the rank 1 perturbation (−hih
H

i )
does not affect asymptotically the trace in (26). And therefore,

approximately,

γi =
T1ii

nT1

trR1





K
∑

j=1

HjH
H

j + σ2InR





−1

(27)

Noting that e1(z) in Section IV-A corresponds to the

normalized trace in Equation (27) (this is shown precisely in

the proof of Theorem 1 [2]), we finally have the compact

expression for CMMSE,

CMMSE(σ2) =
1

nR

nT1
∑

i=1

log2

(

1 +
1

c1
T1ii

e1(−σ2)

)

(28)

In practice, when no power allocation strategy is applied,

T1ii
= P the average power per transmit symbol, and the

capacity becomes CMMSE = c1 · log2(1 + P
c1

e1(−σ2)).

V. SIMULATION AND RESULTS

In the following, we apply the results (12) and (28) to the

downlink of a two-cell network. The capacity analyzed here

is the achievable rate on the link between base station 1 and

the user, the latter of which is interfered by base station 2.

The relative power of the signal received from user 2 is on

average Γ times that of user 1. Both base stations 1 and 2
are equipped with linear arrays of nT antennas and the user

with a linear array of nR antennas. The correlation matrices

Ti at the transmission and Ri at the reception, i ∈ {1, 2}, are

modeled thanks to a generalization of Jake’s model including

solid angles of transmit/receive power, i.e. for instance,

Tiab
=

∫ θ(i)
max

θ
(i)
min

exp

(

2π · i ·
dTi

ab

λ
cos(θ)

)

dθ (29)

with dTi

ab the distances between antennas indexed by a, b ∈

{1, . . . , nTi
} for transmitter i, (θ

(i)
min, θ

(i)
max) the angles over

which useful power (i.e. power that will be received by user

1) is transmitted, and λ the wavelength.

In Figure 1, we took nR = 16, Γ = 0.25 and we consider

optimal single-user decoding at the receiver. For every real-

ization of Ti, Ri, 1000 channel realizations are processed to

produce the simulated ergodic capacity and compared to the

theoretical capacity (28). Those capacities are then averaged

over 100 realizations of Ti, Ri, varying in the random choice

of θ
(i)
min and θ

(i)
max with constraint θ

(i)
max − θ

(i)
min = π/2, while

dTi

ab = 10λ|a − b| at the transmitters, dR
ab = 2λ|a − b| at

the receiver. The SNR ranges from −5 dB to 30 dB, and

nT ∈ {8, 16}. We observe here that Monte-Carlo simulations

perfectly match the capacity obtained from Equation (12).
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Fig. 1. Capacity of point-to-point MIMO in two-cell uplink, optimal single-
user decoding, nR = 16, nT ∈ {8, 16}, Γ = 25%.

In Figure 2, with the same assumptions as previously, we

apply MMSE decoding at the base station. Here, a slight

difference is observed in the high SNR regime between theory

and practice. This was somehow expected, since the large nR

approximations in Silverstein’s lemmas [1] are very loose for

σ2 close to R− in the sense of the Euclidean distance. To

cope with this gap, many more antennas must be used. We

also observe a significant difference in performance between

optimum and linear MMSE decoders, especially in the high

SNR region. Therefore, in wireless networks, when interfering

cells are treated as Gaussian correlated noise at the cell-edge,

i.e. where the interference is maximum, the MMSE decoder

provides tremendous performance loss.

VI. CONCLUSION

In this paper, we introduced an important theorem relating

the Stieltjes transform of a class of large matrices to a

deterministic approximate. Based on this formula, we provided

compact expressions for the optimal and MMSE-decoder

capacities of point-to-point MIMO with inter-cell interference,

for random channel matrices with separable variance profile,

both in downlink and in uplink. The simulations show perfect

match with the theoretical formulas in the low-SNR region,

even if fewer antennas are used at the transmitters and

receivers. As for the high SNR region, a large number of

antennas must be used to reach an accurate match between

theory and Monte-Carlo simulations.
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