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Abstract Frequency-Band-Decomposition (FBD) is a good candidate to be used
to increase the bandwidths of ADC converters based on sigma-delta modulators for
software and cognitive radio applications where we need to convert wide bandwidths.
Each modulator processes a part of the band of the input signal which is then passed
through a digital filter. In the case of large mismatches in the analog modulators, a
new solution, called Extended Frequency-Band-Decomposition (EFBD) can be used.
As an example, this solution can allow for a 4 % error in the central frequencies
without significant degradation of its performance when the digital processing part
is paired with the analog modulators. A calibration of the digital part is thus required
to reach these theoretical performances. This paper will focus on a self-calibration
algorithm for an EFBD. The algorithm helps minimize the quantization noise of the
EFBD and helps to flatten the signal transfer function.

Keywords sigma-delta · bandpass · analog-to-digital conversion · filter bank ·
frequency-band-decomposition · self-calibration

1 Introduction

The Frequency-Band-Decomposition (FBD) [1], [2], [3] is a natural way to widen
the bandwidth of sigma-delta converters [4], using parallel bandpass modulators,
where each modulator processes a part of the band of the input signal [5]. The
main issue of this process is its sensitivity to the central frequencies of the bandpass
modulators. Extended Frequency-Band-Decomposition (EFBD) [5] makes it possible
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to convert a wideband signal, using two extra continuous-time bandpass modulators.
This solution is able to adapt to the analog mismatches of the modulators, in order
to minimize the quantization noise and to allow for the correct reconstruction of the
input signal. These analog mismatches are caused by variations in the manufacturing
processes. The transfer function should be as close as possible to a simple delay
(minimum in-band ripple and linear phase).

As in many conversion systems, a calibration of digital part of the EFBD becomes
unavoidable. Many sigma-delta topologies need a digital calibration. For example,
the mismatch effects in MASH topologies could be reduced by using an on-line or an
off-line calibration [6] or a background coefficient estimation [7]. The non-linearities
induced in the DAC of multi-bit modulators can also be reduced by the use of
calibration [8], [9]. Time-Interleaved solutions need calibration as the gain and offset
errors induce spurious-tones [10].

A parallel lowpass sigma-delta solution also needs a calibration. As in the case of
Time-Interleaved converters, gain and offset errors induce unwanted tones that can
be minimized by adequate calibration [11], [12]. Such a calibration is performed by
applying constant signals to each modulator and deducing the gain and offset from
the filter outputs.

One of the advantages of the FBD solution is that linear mismatches do not
produce spurious tones. They only result in an in-band ripple and in an increase of the
quantization noise. Using continuous-time modulators helps increase the sampling
frequency, and induces natural filtering in the working band of each modulator.
On the other hand, local STF corrections must be performed together with phase
adjustments in the case of an EFBD. The calibration proposed in [12] for FBD
can only deal with offset and gain, which is not sufficient for EFBD solutions. An
algorithm that can calibrate all the parameters of the digital part of an EFBD
without requiring heavy computing resources is proposed in this paper.

The second section of this paper gives the main elements of the optimization of
the quantization noise of an EFBD: first, the theoretical elements and second, the
calibration method. The output mean power is minimized by modifying the band-
widths of the filters, the input simply being grounded. The third section deals with
the signal transfer function (STF) flattening. Finally, the fourth section concludes
with the complexity and the calibration time of the whole algorithm.

2 Optimization of EFBD Noise Transfer Function

2.1 Theory

An EFBD is composed of N + 2 parallel sigma-delta modulators (Fig. 1 - part A),
where N is the number of modulators required to process the input signal band
[f1, f2]. Two extra modulators are used in the case of large analog mismatches so
that the useful band [f1, f2] remains within the working band of the FBD. The
output of all channels are merged by a digital system (part B) to reconstruct the
input signal.

The major benefit of the EFBD architecture is that it allows to increase the
conversion bandwidth with a linear increase of the power consumption (the total
power consumption is N+2 times the power consumption of one modulator) whereas
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Fig. 1 Extended Frequency Band Decomposition architecture

with a single bandpass sigma-delta modulator, the power consumption increases
exponentially while increasing the bandwidth [13].

Continuous-time modulators (Figure 1, part A) are used to overcome difficulties
related to the frequency limitations of the discrete-time integrators that are built
with switched capacitor circuits [14]. They can be designed from their discrete-time
counterparts by using the method published in [14]. The sigma-delta modulator
used in this paper is a third order continuous time bandpass modulator with a 3-bit
quantizer using the classic cascaded topology as shown in Fig 2 (the purpose of this
paper is not the topology of the analog modulator ; some more adequate topologies
can be found in [16] or [15]).

G (s)1 G2
(s) G3(s) ADC

yx

DAC

− − −

S (z)
k

Fig. 2 Third order continuous-time bandpass sigma-delta modulator.
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The expected performance of each modulator can be evaluated from the in-band
noise power given by [4]:

PNoise =
π2Le2

(2L+ 1) (OSR)
2L+1

(1)

where :
L is the modulator order,
e2 is the quantization noise power,
OSR is the oversampling ratio.

The order of the modulator was set at three due to its chaotic behavior when no
signal is applied at the input. This characteristic is very important to ensure a good
running of the proposed calibration algorithms. We choose 3 as the number of bits
of the ADC inside the loop to fulfill the expected performances of our application.
Moreover, with 3-bit quantizer, the linear model of the quantizer [17] is often verified.

The digital processing associated with each modulator is composed of a complex
demodulation process that brings the signal to baseband (demodulation frequencies
are denoted fkC), of a comb filter that performs a decimation, of a FIR filter Hk(z)
that removes the out-of-band noise, of a signal transfer function correction filter
Ck1 (z) and of a modulation. The complete digital processing for one modulator is
summarized in Fig. 1 - part C. The frequencies used for demodulation and modula-
tion are expressed as rational numbers so that the sequences are finite and can be
stored in a ROM [5].

The Noise Transfer Function (NTF) optimization of the system consists in using,
for each frequency band, the modulator that has the best Signal-to-Noise Ratio
(SNR). As the Signal Transfer Function (STF) is usually quite flat in the working
band of the modulator, the modulator which is to be used for each frequency is the
one whose noise power density is the lowest at this frequency.

Fig. 3 gives as an example, the noise power densities of each modulator (NTF k),
where all resonator frequencies differ from their ideal values by a constant value plus
random mismatches (modeling process non-idealities). The Q factors of the filters are
equal to 50. The boundaries between the bands of each modulator are represented
by vertical lines. In this example (f1 = 0.2, f2 = 0.3), the 10th modulator (Σ∆9) is
not used as its band is completely outside the signal band.

The global system quantization noise power is the sum of the contributions of

each modulator: PNTFt =
N+1∑

k=0

PNTFk .

PNTFk =

1
2∫

f=− 1
2

∣
∣
∣Hk(e2jπNd(f−fk

C
))
∣
∣
∣

2 ∣
∣NTF k(e2jπNdf )

∣
∣
2
Γk(f)df (2)

Nd is the decimation ratio, Γk(f) is the quantization noise power spectral density
and can be assumed constant [17]. Hk(f) is the kth FIR filter transfer function. It
is assumed that the comb decimation filter sufficiently removes the folded noise
produced by aliasing.
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Fig. 3 Boundaries with non-ideal modulators

Fig. 4 gives an example of the magnitude of the product
∣
∣
∣Hk(e2jπNd(f−fk

C
))
∣
∣
∣

2 ∣
∣NTF k(e2jπNdf )

∣
∣
2

for k = 4. Most of the noise energy remaining after filtering lies between the modu-
lator boundaries (vertical lines).
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Fig. 4 Noise power spectral density after filtering

Thus it can be supposed that each FIR filter suppresses all the out-of-band noise,
which leads to:
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PNTFk =

fk+1

r∫

f=fk
r

∣
∣NTF k(e2jπf )

∣
∣
2
Γ (f)df (3)

where fkr and fk+1
r being the actual boundaries of the useful bands of the modulator

k. All sub-bands are continuous with f0
r = f1 and fN+2

r = f2.

The quantization noise power spectral density is given by [17] :

Γk(f) = Γ =
1

3× 4Nbit
, (4)

where Nbit is the number of bits of the ADC within each sigma-delta modulator.
The global noise power can be expressed by:

PNTFt = Γ

N+1∑

k=0

fk+1

r∫

f=fk
r

∣
∣NTF k(e2jπf )

∣
∣
2
df (5)

Let fkt be the constant frequency chosen as the middle of the band of each
modulator k. Each integral is split into two terms that have at least one constant
boundary. The first and the last term in the sum are separated as they are constant.

PNTFt = Γ

f0

t∫

f=f1

∣
∣NTF 0(e2jπf )

∣
∣
2
df

+Γ
N+1∑

k=1










fk
r∫

f=fk−1

t

∣
∣NTF k−1(e2jπf )

∣
∣
2
df

+
fk
t∫

f=fk
r

∣
∣NTF k(e2jπf )

∣
∣
2
df










︸ ︷︷ ︸

Tk(fk
r

)

+Γ
f2∫

f=fN+1

t

∣
∣NTFN+1(e2jπf )

∣
∣
2
df

(6)

The total noise power is then the sum of two constant values, plus N + 1 terms,
each of them depending on one of the boundaries f1

r to fN+1
r . The non-constant

term
N+1∑

k=1

T k
(
fkr
)

is then the term to be minimized in order to minimize PNTFt .

Each boundary can then be optimized independently from the others. Fig. 5 shows
as an example |NTF 3|, |NTF 4| and the term T 4

(
f4
r

)
in Eq. (6) which is the criterion

to be minimized where f4
r

is involved. This criterion appears reasonably convex and
smooth.

It was verified that this property remains true when taking the FIR filter effect
into account, resulting in a behavior similar to that of Fig. 5.
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2.2 Noise transfer function calibration algorithm

The noise transfer function is optimized by tuning the boundaries between modula-
tors fk

r
, k = 1..N + 1 from fk−1

r
to fk+1

r
. The frequencies used for the modulator

and demodulator are deduced from these values:

fkC = (fk−1
r + fkr )/2, (7)

and the bandwidths of the lowpass filters.

∆fk =
fkr − f

k−1
r

2
for k = 1..N. (8)

It was shown in [5] that an error of 4% in the width of the sub-band (0.05% of the
sampling frequency) causes a resolution loss of less than 0.1 bit. Thus, the boundary
frequency values (fkr ) can be quantized in this example with a step qs = Fs/1024.
The whole band represents 102 steps and the bandwidth of each sub-band would be
12 or 13 steps if all modulators were ideal.

In order to get only the quantization noise at the output of the EFBD architec-
ture, the input must be first grounded. The noise power produced by the quantization
is then minimized by varying the values of the boundary frequencies fkr . The demod-
ulation sequence and the lowpass FIR filters are fully determined by the knowledge
of these values (7) and (8).

The adaptation scheme given in Fig. 6 was used. The scheme itself uses the
processing of the digital part presented in Fig. 1. The estimate of the converter noise
power is:

P̂ =
1

Ns

Ns∑

n=1

N+2∑

k=1

(Ik[n]
2 +Qk[n]

2) (9)

Ns is the number of samples used for the power estimation, I and Q are the
outputs of each filter (Fig. 1) .
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Fig. 6 Block diagram of the NTF optimization algorithm.

The proposed algorithm is based on a so-called relaxation method [18]. It does
not require any operations except the calculation of the output power. Other faster
algorithms could be used [19], but lead to more complex logic. Initial values are those
obtained theoretically (i.e. typical design values). The algorithm changes iteratively
the boundary value fkr between fk−1

r and fk+1
r for k = 1 to N + 1 in each sequence.

The first boundary remains f1 and the last boundary remains f2. Fig. 7 shows the
flow diagram of this algorithm. The quantization noise power is estimated from a
finite number of samples, leading to an error in the estimation. Due to this error, the
algorithm will not converge to the optimum value in one step. It has to be applied
several times to be sure to reach the optimum point. When 212 samples are used
for the quantization noise power calculation, two or three sequences are required to
reach the optimum parameters.

This algorithm has been performed on a simulation of the modulator bank de-
scribed in Fig. 3 with 10 modulators. The output signals of the modulators have been
memorized so that the same outputs are used for each loop. The results are given
in Fig. 8, which shows the resolution of the EFBD (calculated from the estimated
noise power) after each iteration. It may be seen that the optimum value is reached
at the end of the first sequence.

This algorithm has also been tested in a simulation where the output of the
modulators were calculated for each iteration. The result is given in Fig. 9. It can
be seen that the optimum is reached after three sequences. It has been verified by
simulations that the convergence to the optimum value is also reached after three
sequences for all kinds of mismatches (with systematic or random errors on the
modulator’s central frequencies). The method is therefore relevant.

It has been shown that with the Off-Line method the calibration was established
with 9 iterations. This is due to the fact that the error produced by the noise power
estimation is the same for each calculation step because the same data are consid-
ered. On the contrary, with the On-Line method, the estimation error varies at each
calculation step. This leads to needing more iterations to converge to frequency val-
ues minimizing the noise power at the output as shown in figure 9. It was verified
also that even if the linear model of the ADC inside the modulator loop [17] is not
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Fig. 7 Flow diagram of noise transfer function calibration algorithm.

verified, the proposed algorithm will converge to the optimal solution with the same
run time.

With an 800 MHz analog frequency, each noise power calculation performed from
4000 samples takes 5 µs to perform (the OSR of the system is equal to 5), and each
sequence, in the worst case, takes approximately 1.12 ms (9 boundaries are varied
among 25 values). The total NTF calibration time for 3 sequences can be estimated
to 3.3 ms.

3 Optimization of the signal transfer function

If the system was perfect, the output signal power would be constant when the input
frequency varies. Unfortunately, the modulator transfer functions are not flat. They
can be calculated by methods proposed in [20] and, usually, the modulus of the STF
can be approximated by a parabola whose maximum is in the modulator band [5].
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A corrective filter is applied here to each modulator to flatten its signal transfer
function.

Furthermore, there is a phase shift between adjacent modulators. This phase shift
is corrected by changing the phase of the modulation sequence used in the last stage
of the digital processing [5].
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The STF calibration is performed in two steps: first, to adjust the transfer func-
tion of each modulator, then adjust the phases between adjacent channels.

3.1 Flattening the STF of each modulator

Relying on a 2nd order polynomial approximation of the modulator in its working
band, a 2nd order complex filter was proposed in [5] to equalize the module of the
STF. This correction filter is expressed by:

Ck1 (z) = g
(
−εe−j2πν + (1 + 2ε) z−1 − εej2πνz−2

)
(10)

where ε is the curvature of the parabola, ν is the difference between the center of
the sub-band and the frequency for which the STF is maximum, and g is the inverse
of the maximum of the STF magnitude1.

In order to simplify the implementation of this filter, and assuming that the
maximum of the modulator STF remains within its working band, the coefficient ν
is small, and the filter can be approximated by :

Ck1 (z) ≈ g
(
−ε (1− j2πν) + (1 + 2ε) z−1 − ε (1 + j2πν) z−2

)
(11)

let φ = 2πν, the transfer function of the filter becomes :

Ck1 (z) ≈ g
(
−ε (1− jφ) + (1 + 2ε) z−1 − ε (1 + jφ) z−2

)
(12)

Let X(z) be the z transform of the input complex signal of this filter (X(z) =
XR(z) + jXI(z)), the real and imaginary part of the output complex signal Y (z) =
YR(z) + jYI(z) are expressed by :

YR(z) = g(1 + 2ε)XR(z)z−1 − gεXR(z)(1− z−1)2

+gεφXI(z)(1− z
−2)

YI(z) = g(1 + 2ε)XI(z)z
−1 − gεXI(z)(1− z

−1)2

−gεφXR(z)(1− z−2)

Assuming ε′ = εg and ν′ = gεφ, the above equations can be written in the following
way:

YR(z) = (g + 2ε′)XR(z)z−1 − ε′XR(z)(1− z−2)

+ν′XI(z)(1− z
−2)

YI(z) = (g + 2ε′)XI(z)z
−1 − ε′XI(z)(1− z

−2)

−ν′XR(z)(1− z−2)

The parameters {ε′, ν′} control the central frequency and the curvature of the fre-
quency response of the correction filter Ck1 (z). To illustrate this fact, Fig. 10 and
Fig. 11 show the modulus of the STF after correction while varying ν′ and ε′ inde-
pendently.

The optimum values of parameters {ε′, ν′, g} depend on the useful bandwidth on
each channel. As these bandwidths were recalculated by the algorithm presented in

1 this filter is applied to the demodulated signal



12

Fig. 10 Modulus of the STF after correction compared to the parameter ν′.

Fig. 11 Modulus of the STF after correction compared to the parameter ε′

section 2.2 in order to minimize the global noise power at the output, it is therefore
necessary to recalculate the values of {ε′, ν′, g} to ensure a good correction.

The criterion used by the search algorithm proposed in this article to find the op-
timum values

{
ε′opt, ν

′

opt

}
is to minimize the in-band ripples (the difference between

the highest and the lowest amplitude in the working band) in each channel.
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The proposed algorithm is based upon a straightforward algorithm in which
parameters ε′ and ν′ vary independently in the respective intervals ∆ε′ and ∆ν′

around their theoretical values. The dynamic range of each interval depends on the
architecture of the modulator. Each interval is divided intoNv values. The parameter
Nv controls the smoothing of the criterion and the required precision for the optimal
values. Figure 12 shows the contour of the criterion to minimize with Nv = 16. It
can be noticed that the parameters ε′ and ν′ are independent and a 16-split of each
interval is sufficient to ensure a smoothing criterion. It was verified by simulations
that the convergence of the algorithm is ensured for all cases in 2 or 3 iterations.

Fig. 12 Contour of the criterion to minimize

The implementation of this algorithm requires the measurement of the magnitude
ripples in the working band at each iteration, so it is necessary to have a reference
signal that has a constant spectral density in this band. A linear chirp signal (in
which the frequency varies linearly with time) can be used for this purpose. This
signal is expressed by:

x(t) = A× cos (2π (fi + βt) t) avec β =
ff − fi
tf

(13)

where fi is the initial frequency at t = 0, ff is the final frequency at t = tf and
β is the rate of frequency increase. The major benefit of using a chirp signal is
the possibility of measuring the magnitude ripples in the frequency domain from the
modulus of the complex envelope. This is due to the linear relationship between time
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and frequency, if the rate of frequency β is small [21]. This would greatly facilitate
the implementation and decrease the time of the calibration algorithm.

Fig. 13 shows the block diagram of the STF calibration algorithm. In this first
step, each modulator is calibrated separately from the others. Practically, only the
output of the modulator which is being calibrated is connected to the digital process-
ing part. The chirp signal, whose frequency varies between the modulator boundaries,
is applied to the modulator. This signal can be generated by an analog fractional-N
synthesizer [22], but this solution requires some analog components such as a VCO.
The proposed optimization algorithm (Fig. 13) uses as input, a one-bit signal gener-
ated by a sigma-delta generator such as the one proposed in [23]. The lowpass FIR
filter coefficients of Fig. 1) are chosen so that the outside band is rejected sufficiently
while its in-band transfer function is flat enough (largest possible bandwidth).

Fig. 13 Block diagram of the STF calibration algorithm.

Fig. 14 summarizes the different steps of the STF calibration algorithm. For each
parameter value, a chirp signal is applied covering the useful bandwidths [fkr , f

k+1
r ];

the maximum and minimum output amplitude (the square of the modulus Q2
k +

I2k) are memorized. The difference between the highest amplitude and the lowest
amplitude (in-band ripple) is used as the criterion. The optimal parameter νopt is
the one that minimizes this ripple.

Fig. 15 shows a simulation example of an EFBD with a single modulator con-
nected to the fourth filter. The input signal is a 1-bit chirp signal varying from
reduced frequency f4

r = 0.244 to f5
r = 0.256. The vertical lines show the working

band of this modulator (defined by the NTF optimization). The number of the sub-
intervals Nv is equal to 16. A dropout in the STF may be seen before calibration.
After calibration, the STF is almost flat.

Even if this algorithm is not optimum in terms of operations, for its practical
needs, it only requires counters, registers, a comparator, a sequencer, and an ampli-
tude calculator. With an 800 MHz analog frequency and 40 000 samples, each chirp
sequence takes 50 µs (40000/800MHz) to perform. The execution of the algorithm
requires changing the parameters ν and ǫ on Nv values. With Nv = 16, and as the
algorithm converges to the optimal values in 2 iterations, the calibration for each
modulator requires 3.2 ms (50 µs× 16× 2× 2) Each execution of the algorithm re-
quires varying the parameter ν and ǫ on 16 values. The total STF calibration time
for the ten modulators can be estimated at 32 ms.
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Fig. 14 Flow diagram of the STF calibration algorithm

3.2 Adjusting the phase shifts

Theoretically, the phases are not continuous in the transition zone between adjacent
subbands due to the STF phase and to the demodulation and remodulation in the
digital part (Fig. 1 - part C). This gap phase introduces ripples around the transition
zone in the output spectrum. It has been shown in [5] that this phase discrepancy
can be compensated by multiplying the signal in each channel with a constant factor



16

0.235 0.24 0.245 0.25 0.255 0.26 0.265
0

0.1

0.2

0.3

0.4

0.5

|S
R

[n
]
+

j
S

I
[n

]|

a)

0.244 0.246 0.248 0.25 0.252 0.254 0.256
0.46

0.47

0.48

0.49

0.5

0.51

f

|S
R

[n
]
+

j
S

I
[n

]|

b)

Before correction

After correction

Σ∆4

f4
r f5

r

f4
r f5

r

Fig. 15 First phase STF calibration

(a complex number with a modulus equal to unity) in order to obtain a continuous
phase in the full band. This multiplication is just a phase shift in the modulation
sequence m

′

k [n] = ej2πNdf
k

c
n(Fig. 1 - part C).

The optimal value of the phase shift is related to the working-band of each
channel. It is therefore necessary to recalculate this phase shift following the new
bandwidth provided by the NTF optimization algorithm (presented in section 2.2)
minimizing the noise power at the output.

The determination of the optimum phase shift value uses the same algorithm
for the flattening of the STF. In this case, all the modulators are connected to dig-
ital processing. For each channel k, the phase shift d(k) varies in an interval ∆d of
Nd values around its theoretical value dth(calculated assuming that the modulators
are ideals). Then, for each value of d, a chirp signal is generated in the bandwidth
[fk−1
r , fk+1

r ] to measure the ripple magnitudes in the transition zone around the fre-

quency fkr between
fk
r

+fk−1
r

2 and
fk
r

+fk+1
r

2 . The optimum value is the one minimizing
the ripple magnitudes. We choose zero as the phase of the first modulator and we
vary the phase shifts of modulators 2 to N . Fig. 17 summarizes the different steps
of the STF calibration algorithm.

Fig. 16 gives the amplitude of the output of the system for a chirp input signal
(amplitude is 0.5, frequency varies from 0.2Fe until 0.3Fe) before and after the
calibration. The uncalibrated system has some large ripples (6.4%) produced by the
phase errors while the response of the calibrated system remains within an acceptable
ripple (0.4% below the theoretical value of the module (0.5)).

The above algorithm is still a straightforward relaxation algorithm and again,
needs only some counters and a sequencer. With an 800 MHz analog frequency and
20 000 samples, each chirp sequence takes 25 µs to perform. If each d(k) value varies
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Fig. 16 System output for a chirp input before and after phase calibration

among 64 values, the total phase calibration time for the ten modulators can be
estimated to 16 ms.

4 Conclusion

Parallelism was used in the most cases in the state of art with time interleaving to in-
crease the ADC bandwidth dedicated to homodyne receiver. The EFBD architecture
is the first architecture, to our knowledge, using the frequency band decomposition
principle that allows a limited wide band conversion required for heterodyne re-
ceivers. We have demonstrated that, with the auto-calibration algorithms described
in this paper, the EFBD sigma-delta converter becomes less sensitive to resonator
central frequencies shift due to analog imperfections. The main advantage of these
algorithms is to use the implemented digital filter plus a reasonable amount of logic.
Two main elements are required (a power estimator and a signal generator), asso-
ciated with counters and a sequencer. The quantity of logic associated with this
filter can be neglected when compared with the main filter. The whole calibration
process proposed in this paper can be performed in approximately 52 ms, which is
compatible with the start-up time of any communications system, even if the pro-
posed algorithm (which is quite simple so as to lead to very low complexity) could be
improved in order to decrease this calibration time. Anyway, the possibility of per-
forming a start-up adjustment have shown the feasibility of using a EFBD converter,
without requiring rigorous analog adjustments.
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Fig. 17 Flow diagram of the algorithm for phase shift calibration.


