P. J. Bickel and E. Levina, Some theory for Fisher's linear discriminant function, `naive Bayes', and some alternatives when there are many more variables than observations, Bernoulli, vol.10, issue.6, pp.989-1010, 2004.
DOI : 10.3150/bj/1106314847

H. Binder and M. Schumacher, Incorporating pathway information into boosting estimation of high-dimensional risk prediction models, BMC Bioinformatics, vol.10, issue.1, p.18, 2009.
DOI : 10.1186/1471-2105-10-18

A. L. Boulesteix, Over-optimism in bioinformatics research, Bioinformatics, vol.26, issue.3, pp.437-439, 2010.
DOI : 10.1093/bioinformatics/btp648

A. L. Boulesteix and C. Strobl, Optimal classifier selection and negative bias in error rate estimation: an empirical study on high-dimensional prediction, BMC Medical Research Methodology, vol.98, issue.1, p.85, 2009.
DOI : 10.1093/jnci/djj329

A. L. Boulesteix, C. Strobl, T. Augustin, and M. Daumer, Evaluating microarray-based classifiers: an overview, Cancer Informatics, vol.6, pp.77-97, 2008.

U. Braga-neto and E. R. Dougherty, Is cross-validation valid for small-sample microarray classification?, Bioinformatics, vol.20, issue.3, pp.374-380, 2004.
DOI : 10.1093/bioinformatics/btg419

M. Daumer, U. Held, K. Ickstadt, M. Heinz, S. Schach et al., Reducing the probability of false positive research findings by pre-publication validation ??? Experience with a large multiple sclerosis database, BMC Medical Research Methodology, vol.190, issue.1, p.18, 2008.
DOI : 10.1016/j.jneuroim.2007.07.011

P. Domingos and M. Pazzani, On the optimality of the simple bayesian classifier under zero-one loss, Machine Learning, vol.29, issue.2/3, pp.103-130, 1997.
DOI : 10.1023/A:1007413511361

S. Dudoit, J. Fridlyand, and T. P. Speed, Comparison of Discrimination Methods for the Classification of Tumors Using Gene Expression Data, Journal of the American Statistical Association, vol.97, issue.457, pp.77-87, 2002.
DOI : 10.1198/016214502753479248

B. Efron and C. Morris, Stein's Paradox in Statistics, Scientific American, vol.236, issue.5, pp.119-127, 1977.
DOI : 10.1038/scientificamerican0577-119

J. H. Friedman, Regularized Discriminant Analysis, Journal of the American Statistical Association, vol.33, issue.405, pp.165-175, 1989.
DOI : 10.1080/01621459.1989.10478752

V. Guillemot, L. L. Brusquet, A. Tenenhaus, and V. Frouin, Graph-constrained discriminant analysis of functional genomics data, 2008 IEEE International Conference on Bioinformatics and Biomeidcine Workshops, 2008.
DOI : 10.1109/BIBMW.2008.4686237

URL : https://hal.archives-ouvertes.fr/hal-00346450

Y. Guo, T. Hastie, and R. Tibshirani, Regularized linear discriminant analysis and its application in microarrays, Biostatistics, vol.8, issue.1, pp.86-100, 2007.
DOI : 10.1093/biostatistics/kxj035

P. Hall and J. Xue, Incorporating prior probabilities into high-dimensional classifiers, Biometrika, vol.97, issue.1, pp.31-48, 2010.
DOI : 10.1093/biomet/asp081

M. Kanehisa and S. Goto, KEGG: Kyoto Encyclopedia of Genes and Genomes, Nucleic Acids Research, vol.28, issue.1, pp.27-30, 2000.
DOI : 10.1093/nar/28.1.27

O. Ledoit and M. Wolf, Improved estimation of the covariance matrix of stock returns with an application to portfolio selection, Journal of Empirical Finance, vol.10, issue.5, pp.603-621, 2003.
DOI : 10.1016/S0927-5398(03)00007-0

O. Ledoit and M. Wolf, Honey, I Shrunk the Sample Covariance Matrix, The Journal of Portfolio Management, vol.30, issue.4, pp.110-119, 2004.
DOI : 10.3905/jpm.2004.110

C. Li and H. Li, Network-constrained regularization and variable selection for analysis of genomic data, Bioinformatics, vol.24, issue.9, pp.1175-1182, 2008.
DOI : 10.1093/bioinformatics/btn081

R. Penrose, A generalized inverse for matrices, Mathematical Proceedings of the Cambridge Philosophical Society, vol.11, issue.03, pp.406-413, 1955.
DOI : 10.1093/qmath/2.1.189

F. Rapaport, A. Zinovyev, M. Dutreix, E. Barillot, and J. Vert, Classification of microarray data using gene networks, BMC Bioinformatics, vol.8, issue.1, p.35, 2007.
DOI : 10.1186/1471-2105-8-35

URL : https://hal.archives-ouvertes.fr/hal-00433577

D. M. Rocke, T. Ideker, O. Troyanskaya, J. Quackenbush, and J. Dopazo, Papers on normalization, variable selection, classification or clustering of microarray data, Bioinformatics, vol.25, issue.6, pp.701-702, 2009.
DOI : 10.1093/bioinformatics/btp038

J. Schäfer and K. Strimmer, A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics, Statistical Applications in Genetics and Molecular Biology, vol.4, issue.1, 2005.
DOI : 10.2202/1544-6115.1175

D. Singh, P. G. Febbo, and K. Ross, Gene expression correlates of clinical prostate cancer behavior, Cancer Cell, vol.1, issue.2, pp.203-209, 2002.
DOI : 10.1016/S1535-6108(02)00030-2

M. Slawski, W. Zu-castell, and G. Tutz, Feature selection guided by structural information, The Annals of Applied Statistics, vol.4, issue.2, 2010.
DOI : 10.1214/09-AOAS302SUPP

G. Smyth, Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments, Statistical Applications in Genetics and Molecular Biology, vol.3, issue.1, 2004.
DOI : 10.2202/1544-6115.1027

C. Stein, Inadmissibility of the usual estimator for the mean of a multivariate normal distribution, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1955.

F. Tai and W. Pan, Incorporating prior knowledge of gene functional groups into regularized discriminant analysis of microarray data, Bioinformatics, vol.23, issue.23, pp.3170-3177, 2007.
DOI : 10.1093/bioinformatics/btm488

F. Tai and W. Pan, Incorporating prior knowledge of predictors into penalized classifiers with multiple penalty terms, Bioinformatics, vol.23, issue.14, pp.1775-1782, 2007.
DOI : 10.1093/bioinformatics/btm234

R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu, Diagnosis of multiple cancer types by shrunken centroids of gene expression, Proceedings of the National Academy of Sciences 99, pp.6567-6572, 2002.
DOI : 10.1073/pnas.082099299

Y. Wang, J. Klijn, and Y. Zhang, Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer, The Lancet, vol.365, issue.9460, pp.671-679, 2005.
DOI : 10.1016/S0140-6736(05)70933-8

M. Yousef, M. Ketany, L. Manevitz, L. C. Showe, and M. K. Showe, Classification and biomarker identification using gene network modules and support vector machines, BMC Bioinformatics, vol.10, issue.1, p.337, 2009.
DOI : 10.1186/1471-2105-10-337

M. R. Yousefi, J. Hua, C. Sima, and E. R. Dougherty, Reporting bias when using real data sets to analyze classification performance, Bioinformatics, vol.26, issue.1, pp.68-76, 2010.
DOI : 10.1093/bioinformatics/btp605