R. Isermann, Supervision, fault-detection and fault-diagnosis methods ??? An introduction, Control Engineering Practice, vol.5, issue.5, pp.639-652, 1997.
DOI : 10.1016/S0967-0661(97)00046-4

G. H. Golub, M. Heath, and G. Wahba, Generalized Cross-Validation as a Method for Choosing a Good Ridge Parameter, Technometrics, vol.5, issue.2, pp.215-223, 1979.
DOI : 10.1080/03610927508827223

R. Kohavi and G. H. John, Automatic Parameter Selection by Minimizing Estimated Error, Proceedings of the Twelfth International Conference on Machine Learning, pp.304-312, 1995.
DOI : 10.1016/B978-1-55860-377-6.50045-1

F. Hutter, H. H. Hoos, and T. Stutzle, Automatic algorithm configuration based on local search, Proceedings of the National Conference on Artificial Intelligence, pp.1152-1160, 2007.

R. Pavón, F. Díaz, and V. Luzón, A model for parameter setting based on Bayesian networks, Engineering Applications of Artificial Intelligence, vol.21, issue.1, pp.14-25, 2008.
DOI : 10.1016/j.engappai.2007.02.013

T. J. Santner, B. J. Williams, and W. Notz, The design and analysis of computer experiments, 2003.
DOI : 10.1007/978-1-4757-3799-8

G. Matheron, Principles of geostatistics, Economic Geology, vol.58, issue.8, p.1246, 1963.
DOI : 10.2113/gsecongeo.58.8.1246

J. Lefebvre, H. Roussel, E. Walter, D. Lecointe, and W. Tabbara, Prediction from wrong models: the Kriging approach, IEEE Antennas and Propagation Magazine, vol.38, issue.4, pp.35-45, 1996.
DOI : 10.1109/74.537364

J. P. Kleijnen, Kriging metamodeling in simulation: A review, European Journal of Operational Research, vol.192, issue.3, pp.707-716, 2009.
DOI : 10.1016/j.ejor.2007.10.013

M. Schonlau, Computer Experiments and Global Optimization, 1997.

D. Jones, A taxonomy of global optimization methods based on response surfaces, Journal of Global Optimization, vol.21, issue.4, pp.345-383, 2001.
DOI : 10.1023/A:1012771025575

D. R. Jones, M. J. Schonlau, and W. J. Welch, Efficient global optimization of expensive black-box functions, Journal of Global Optimization, vol.13, issue.4, pp.455-492, 1998.
DOI : 10.1023/A:1008306431147

M. D. Mckay, R. J. Beckman, and W. J. Conover, A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code, Technometrics, vol.21, issue.2, pp.239-245

M. Sasena, Flexibility and Efficiency Enhancements for Constrained Global Design Optimization with Kriging Approximations, 2002.

D. R. Jones, C. D. Perttunen, and B. E. Stuckman, Lipschitzian optimization without the Lipschitz constant, Journal of Optimization Theory and Applications, vol.20, issue.1, pp.157-181, 1993.
DOI : 10.1007/BF00941892

F. Pukelsheim, The Three Sigma Rule, The American Statistician, vol.48, issue.2, 1994.

W. S. Gosset, The probable error of a mean, Biometrika, vol.6, issue.1, pp.1-25, 1908.

J. Neyman and E. S. Pearson, On the Problem of the Most Efficient Tests of Statistical Hypotheses, Containing Papers of a Mathematical or Physical Character, pp.289-337, 1933.
DOI : 10.1098/rsta.1933.0009

M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes: Theory and Application, 1993.
URL : https://hal.archives-ouvertes.fr/hal-00008518

F. Gustafsson21-]-e, K. Weyer, M. C. Sangho, and . Campi, Adaptive Filtering and Change Detection A randomised subsampling method for change detection, Proceedings of the 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, 2001.

M. Barty´sbarty´s, R. J. Patton, M. Syfert, S. De, J. Heras et al., Introduction to the DAMADICS actuator FDI benchmark study, Control Engineering Practice, vol.14, issue.6, pp.577-596, 2006.
DOI : 10.1016/j.conengprac.2005.06.015

J. Villemonteix, E. Vazquez, and E. Walter, An informational approach to the global optimization of expensive-to-evaluate functions, Journal of Global Optimization, vol.10, issue.5, pp.509-534, 2009.
DOI : 10.1007/s10898-008-9354-2

URL : https://hal.archives-ouvertes.fr/hal-00354262