Fast Extraction of Locally Optimal Patterns based on Consistent Pattern Function Variations

Abstract : This article introduces the problem of searching locally optimal patterns within a set of patterns constrained by some anti-monotonic predicate: given any pattern scoring function, a locally optimal pattern has a maximal (or minimal) score locally among neighboring patterns. Some instances of this problem have produced patterns of interest in the framework of knowledge discovery since locally optimal patterns extracted from datasets are very few, informative and non-redundant compared to other pattern families derived from frequent patterns. This article then introduces the concept of variation consistency to characterize pattern functions and uses this notion to propose GALLOP, an algorithm that outperforms existing algorithms to extract locally optimal itemsets. Finally it shows how GALLOP can generically be applied to two classes of scoring functions useful in binary classification or clustering pattern mining problems.
Document type :
Conference papers
Complete list of metadatas

https://hal-supelec.archives-ouvertes.fr/hal-00552893
Contributor : Sébastien van Luchene <>
Submitted on : Thursday, January 6, 2011 - 10:05:56 AM
Last modification on : Tuesday, July 9, 2019 - 11:58:02 AM

Links full text

Identifiers

Collections

Citation

Frédéric Pennerath. Fast Extraction of Locally Optimal Patterns based on Consistent Pattern Function Variations. European Conference on Machine Learning and Knowledge Discovery in Databases 2010, Sep 2010, Barcelona, Spain. pp.34-49, ⟨10.1007/978-3-642-15939-8_3⟩. ⟨hal-00552893⟩

Share

Metrics

Record views

63