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The Waterfiling Game-Theoretical Framework
for Distributed Wireless Network Information

Flow

Gaoning He, Laura Cottatellucéiand Merouane Debbah

Abstract

We present a general game-theoretical framework for theures allocation problem in the down-
link scenario of distributed wireless small-cell netwqgrkgere multiple access points (APs) or small
base stations send independent coded network informatdiomuttiple mobile terminals (MTs) through
orthogonal frequency division multiplexing (OFDM) chaisén such a game-theoretic study, the central
question is whether a Nash equilibrium (NE) exists, and jfvgloether the network operates efficiently
at the NE. For independent continuous fading channels, weepthat the probability of a unique
NE existing in the game is equal to We show that this resource allocation problem can be siudie
as a potential game, and hence efficiently solved. We disthessonvergence of waterfilling based

best-response algorithm. Finally, numerical results aowiged to investigate the inefficiency of NE.

I. INTRODUCTION

Recently, there has been an increasing interest for smallneéivorks, where people can
access Internet over many different APs or small base stafalso known as out-door femto-
cells or small cells [1, 2]). Typically, in such a wirelesswerk, several femto-cells are installed
out-door on a given backbone network (with heterogenous las fiber, ADSL, power line) to
provide signal coverage in dense environments. The geitalis to exploit the heterogeneous

wired infrastructure without any new cabling and provideelss high data rate to the users
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through self-organized mechanisms. Unfortunately, ifrsisge connected to a single out-door
femto-cell, they may suffer from low throughput from timettme due to the limited-backhaul
capacity (some wireless high speed femto-cells accessitemet through low capacity DSL or
power line links, e.g., 1Mbps), despite the presence of & beed wireless link. As a result,
users need to access to different APs in the nearby femt®4cebrder to aggregate the sum
capacity of the backhaul links. An interesting concept isoosider the nearby femto-cells as
a virtual femto-cell group, whose backhaul capacity is them ©f the access capacities of all
the nearby femto-cell group (as shown in Fig. 1). The issumad balancing [3] in the wired
network (and how the different packets are split with respedhe backhaul capacity from a
main decentralized scheduler), although important, isdeatlt with in this contribution and we
will suppose that perfect load balancing holds.

In this paper, we focus on the resource allocation problenttfe downlink scenario (from
femto-cell group to MTs) using OFDM air-interface [4] ovenamber of dedicated sub-channels.
We assume that all these femto-cells get independent indepé packets (network coding is
applied at the source) from the Internet via their backhaansl send them physically to each
MT in a distributed manner. Usually, in this situation ea@mfto-cell needs to decide how
to distribute the total available transmit power ov€rdownlink sub-channels (sub-carriers or
clusters of sub-carriers), i.e., should it allocate allptsver to a single sub-channel, spread the
power over all the sub-channels, or choose some subset afhsuinels on which to transmit?

Traditionally, this resource allocation problem is coreset as a global optimization problem.
It is well known that the problem of maximizing a single usesum-rate (corresponding to
the Shannon transmission rate [5]) over all the sub-chanisel classic convex optimization
problem [6], whose solution is “waterfilling” [7, 8, 9]. Theutti-user version of this problem
is, a non-convex optimization which is generally difficutt tind the exact solution, since it
may have several local optimal points [10, 11, 12]. Howet@rsolve the multi-user problem,
it usually requires a central computing resource (a scleedulth comprehensive knowledge of
the channel state information (CSl)) to globally manage #stesn resources. This process is
centralized, it involves feedback and overhead communicavhose load scales linearly with
the number of transmitters and receivers in the network.

It is certainly possible to improve the useful data transioiss by reducing transmissions

of insignificant or unnecessary feedback information. lis tthirection, a selective multi-user
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diversity algorithm has been introduced in [13]. The keyaids to find a suitable trade-off
between the network performance and the feedback load.rtheless, this partial feedback
approach still has its self-limitation in network scalingoblems. As wireless networks are
becoming more and more dense, the global optimization agpraill be more and more difficult
to meet the needs of future wireless communication devedopm

Within the recent ten years, increased research interegbden given to self-organizing wire-
less networks in which nodes allocate resources in a dedzetd manner [1]. Non-cooperative
games theory [14], borrowed from many economic applicatiftb] provides an alternative
solution by considering every femto-cell as a selfish playlko “plays” the game by rationally
choosing its transmit power levels. In this respect, it ipamant to study the NE [16] (the
solution concept of non-cooperative games) because iesepts a predictable outcome for a
self-organizing network.

It is worth to mention that a special case of this game has lsaatied in [10], where the
authors show an infinite number of NE under their specific neagain assumptions. However,
up to now, the characterization of NE in the wireless setigngtill not clear as it depends on the
channel fading statics and the number of players. The gotlisfpaper is therefore to address
this fundamental problem as well as the convergence issue.

The paper is organized in the following form: In sectloh lle wtroduce the problem for-
mulation. In sectioIll, we study the existence and unigssnof NE and we characterize the
NE set. In sectiof IV, we study the problem as a potential gdfireally, numerical results are

provided in sectiofiLV followed by conclusions in sectiod VI.

II. SYSTEM MODEL
A. Multi-user OFDM model

We consider an OFDM downlink scenario willdi non-cooperative APs simultaneously send-
ing information to N MTs over N sub-channels (as shown in Fig. 2). We assume that each
sub-channel is pre-assigned to a different MT by a scheduker each MT receives signals
only on the assigned sub-channel. Without loss of gengralitoughout this paper we assign
sub-channeh to MT n, for n = 1,..., N. This implies that both MT set and sub-channel set

share the same index in our context.
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Furthermore, we assume that the sub-channels are blocigfads. the channel fading coeffi-
cients are constant during the transmission of a codewarfiook. Within a given transmission
block, letG € RY*" be the channel gain matrix whosge:, n) entry is g,,.., the channel gain
of the link from AP m to MT n on the pre-assigned sub-chanmelWe assume thaG is a
randomM x N matrix with i.i.d. (due to independent fading) entries. We further assume that
the distribution function of each positive entgy, ,, is a continuousfunction.

By assuming that the MTs use low complexity single-user derodl7], we can write the
signal-to-interference-plus-noise-ratio (SINR) of thgnsil from APm received at MTn as

ImmnPmn
0%+ ij\il,j;ﬁm 9jnPjn
wherep,,,, is the power transmitted from AR on sub-channeh, o2 is the variance of the

Ymn =

white Gaussian noise. For AR, write the maximum achievable sum-rate as [7]

N
R,, = Z log (1 +9mn), Ym 1)

n=1

and the power constraint as

N
> P < PR Ym 2

n=1

where P»** is maximum transmit power of AR and P2 > 0, Vm.

B. As a non-cooperative game

Here, we introduce a non-cooperative strategic game fer @DM model. Intuitively, the
natural goal of each APn is to maximize the transmission rat®,, () by choosing its
transmit power vectop,, = [p.1---pm.n|T, Subject to its power constrainf](2). Denote by
p= [plT, . ,pTM]T the outcome of the game in terms of transmit power levels loflAIAPS
on N sub-channels. We can completely describe this non-cotyper@source allocation game

as

g = [ M7 {Pm}me/\/( ’ {um}me/\/l }

where the elements of the game are

« Player set M = {1,..., M};
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. Strategy set{P,,..., P}, where the strategy of playen is

N
P = {pm " Pmn > O,VW/ and mem < p:rrllax} :

n=1

. Utility or payoff function set{uy, ..., uy}, with

N
U, (pma p—m) == Z log (1 + gm,npm,n ) = Rm
n=1

wherep_,, denotes the power vector of length/ — 1) N consisting of elements g other

than them'” element, i.e.,

P-m = [pl PR ap%_ppgﬂ_p s 7p£[]T

Ill. CHARACTERIZATION OF NASH EQUILIBRIUM
A. Definition of Nash equilibrium

In such a non-cooperative game setting, each playearcts selfishly, aiming to maximize its
own payoff, given other players’ strategies and regardbdédke impact of its strategy may have
on other players and thus on the overall performance. Theepsoof such selfish behaviors

usually results ifNash equilibriuma common solution concept for non-cooperative games [16].

Definition 3.1: A power strategy profilp* is a Nash equilibrium if for everyn € M,

*

U, (Pl PE) = U (P Pn) (3)

for all p,, € Py,..

From above, it is clear that a NE simply represents a padictdteady” state of a system,
in the sense that, once reached, no player has any motivitiomilaterally deviate from it.
In many cases, the NE represents the result of learning aoldten of all the participants.
Therefore, it becomes fundamentally important to predid aharacterize such point(s) from
the system design perspective of wireless networks. In eke of the paper, we will focus on
charactering such point(s). The following questions wél &ddressed one by one:

« Does a NE exist in our game?

« Is the NE unique or there exist multiple NE points?

« How to reach a NE if it exists?

« How does the system perform at NE?
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B. Existence and uniqueness of Nash equilibrium

It is known that in general NE point does not necessarilyteXiserefore, we first investigate

the existence of NE in our game. We introduce the followingotiem:

Theorem 3.2: A Nash equilibrium exists in the OFDM gagne

Proof: SinceP,, is convex, closed, and bounded for eachu,, (p.., p—m) iS continuous
in both p,, andp_,,,; andu,, (p., p_) IS cONcave inp,, for any setp_,,, at least one Nash
equilibrium point exists foilG [17], [15]. [ |

Once existence is established, it is natural to considechiaeacterization of the equilibrium
set. The uniqueness of an equilibrium is quite a desiraldpety, if we wish to predict what will
be the network behavior. But unfortunately many game probleave more than one equilibrium
point [15]. As an example of system with infinite NE we couldsmler a special instance of our
game, namely theymmetric waterfilling gaméhis case is studied in [10] and it is characterized
by equal cross-talk channel coefficients. Then, in genexal,gameG does not have a unique
equilibrium. Nevertheless, under the assumptiomniaf. continuous entries iz, we will show
that the probability of having a unique Nash equilibrium ¢aial to1.

For any playerm, given all other players’ strategy profilp_,,, the best-responsg@ower

strategyp,, can be found by solving the following maximization problem,

max Uy, (Pm, P—m)
Pm

N
> P < P (4)
n=1

Pmn > 0, Vn

which is a convex optimization problem, since the objechivectionw,, is concave irp,, and the

constraint set is convex. Therefore, the Karush-Kuhn-@u¢KKT) conditions for optimization
are sufficient and necessary for the optimality [6]. The KKdnditions are derived from the
Lagrangian for each playen,

p7 )\ V Zlog (1 + 0_2 gm,npm,n‘ ) ) (men Pmax) + Z VmmnPmn

n=1 + Z]'?ém 9jmPjn n=1

October 2, 2009 DRAFT



and are given by

Imn

— A+ VUmn =0, Vn (5)
0%+ Z?il 9jnDjn
N
A (Z Pian — Rﬁ?“) =0 ©)
n=1
VmnPmmn = 07 vn (7)

where \,,, > 0,v,,,,, > 0, Vm Vn are dual variables associated with the power constraint and

transmit power positivity, respectively. The solution [@)-(7) is known as waterfilling [7]

_l’_
1 02 + i+m Yinlin
Pmn = <)\_ - E‘;# Gt > ) vn (8)
where (z)* £ max{0,z} and \,, satisfies
N 2 +
0"+ i j,nlj,n
i _ Zﬁém g]’ p]’ — pmax (9)
A m
o m Immn

Before analyzing the equilibrium set, we derive the follogvitheorem:

Theorem 3.3: A power strategy profier, ..., p3,} is a Nash equilibrium of the gamg if
and only if each player's powepr, is the single-player waterfilling resulid) while treating
other players’ signals as noise. The corresponding necgssad sufficient conditions are:

Im.n
o? + ij‘il 9inPjn

N
Ao (Z Prmn — P;;aX> =0, Vm (11)
n=1

VmnPmn = 0, Vm Vn. (12)

— A+ V=0, Ym Vn (20)

The proof can be found in Appendix A.

From [10), it is easy to find,,, > 0, sincev,,,, > 0, g, > 0, Ym Vn. From [11), we have
N

Y Pun =P, ¥m (13)

n=1

This equation implies that, at the NE, all APs must dedich&rtmaximum power. However,
it is still difficult to find an analytical solution fo (10J2@), since the system consisting bf (8)
and [9) is nonlinear. To simplify this problem we consitlaear equations instead of nonlinear

ones. The following lemma provides a key step in that dicecti
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Lemma 3.4: For any realization of channel mat€x there exist unique values of the Lagrange

dual variables\ and v for any Nash equilibrium of the ganie Furthermore, there is a unique

vectors = [sy,...,s,|T such that any vectop corresponding to a Nash equilibrium satisfies
M
> GmnPmn 2 50, V0 (14)
m=1

The proof can be found in Appendix B.
Now, let Z be the following(M + N) x M N matrix:

IM IM I]V[
& o - O,
z=| o g - o
o} of &l

= (M+N)xMN
whereg,, is then!” column of G, I,; is the M x M identity matrix, and0,, is the zero vector

of length M. Let c be the following vector of lengtid/ + N
c = [Prax pmax  pmax g g0 syt
Then, [1B) and[(14) can be written in the formlwfear matrix equation
Zp =c (15)
Define the following sets
X 2 {(mn) : vy, = 0}
N = {n : 3Im such that(m,n) € X'}

and denote byX| and|N| their cardinalities. From equatioh {12), if an index,n) ¢ X we
must havep,,,, = 0. Without loss of generality, we assume tht= {1,..., N} for N < N.
Let Z be the(M + N) x M N matrix formed from the firsf\/ + N rows and first\/ N columns
of Z, p is formed from the firstM/ N elements ofp, and ¢ is formed from the first\/ + N

elements ofc. Then, any NE solution must satisfy

7p = ¢&. (16)
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Let Z be the(M + N) x |X| matrix formed from the columns d that correspond to the
elements oft. Similarly, letp be the vector of lengthY’| with entriesp,,, ,, such thatm,n) € X

(same order as they were ). Then any NE solution must satisfy

Zp = ¢. (17)

Lemma 3.5: For any realization of a random/ x N channel gain matrixG with i.i.d.

continuous entries, i/ N > M + N, the probability that X'| < M + N is equal tol.

Lemma 3.6:
1) If MN > M + N and|X| < M + N, the probability thatrank(Z) = |X| is equal tol.
2) If MN < M + N, the probability thatrank(Z) = M N is equal tol.

The proofs of Lemm&a3l5 ad 8.6 can be found in Appefdix C[anck&pectively.
Based on the results from Lemrhal3.4 to Lenima 3.6, we derivedif@ving theorem.

Theorem 3.7: For any realization of a random x N channel gain matrixG with i.i.d.
continuous entries, the probability that a unique Nash eloilm exists in the gam§g is equal

to 1.

The proof can be found in AppendiX E.
Thus, from Theorerh 3.2 arid 8.7, we have established thesegistand uniqueness of NE in

our gameg.

IV. CONVERGENCE TO THENASH EQUILIBRIUM

Equilibrium is meaningful in practice only if it is reachabfrom non-equilibria states. In
fact, there is no reason to expect a system to operate inigakequilibrium. The “convergence
to equilibrium” is in general a much harder problem which sually related to the analy-
sis of synchronous or asynchronous update mechanisms ¢se® references for interference
channels [20, 21]).
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10

A. Potential game approaches

Fortunately, our gamé can be studied as a potential gg.ﬂ%otential games are known to have
nice properties for the convergence of the best-respongeeedy algorithms to the equilibrium.
All the potential games admit potential function This potential function is a unique global
function that all the players optimize when they optimizeitiown utility functions. Thus, the set
of pure Nash equilibria can be found by simply locating trealmptima of the potential function.
Such games have received increasing attention recentlyreless networks [24, 25, 26], since
the existence of potential function enables the design Ibf flistributed algorithms for resource
allocation problems.

In fact, there are various notions of potential games (wiffieicnt definitions related to slightly
different properties for the existence and convergencegaflierium), such as exact potential,
weighted potential, ordinal potential, generalized catlipotential, pseudo potential, etc. Here

we only give the definition of the exact potential games, Whg closely related to our game.

Definition 4.1: A strategic gamég is called an exact potential game if there exists a function

v : P +— R satisfying

v (pm7 p—m) —-v (qm7 p—m) = Um (pm> p—m) — Um (qma p—m) 5 vm (18)

for all (pm,P-m), (am, P-m) € P. The functionv is called as exact potential of the game.

Obviously, equation[(18) implies that the NE of the origigaimeG must coincide with the
NE of the potential game, which is defined as a new game takotgngal functionv as utility
functions for all the players. Therefore, we can transfone mon-cooperative strategic gargie
into a potential game, if we can find a potential function thaantifies the difference in the
utility function due to unilaterally deviating each playes indicated in[(18).

Taking inspiration from the result derived in the single mhal case [25], it is not difficult

to see that in our multi-channel casgjs an exact potential game with the following potential

1The notation of potential games was firstly used for games in strategicHprRosenthal (1973) [19], and later generalized
and summarized by Monderer (1996) [22].

October 2, 2009 DRAFT



11

function v*, i.e.,

M
0V (Pms Pomm) = Zlog U2+ng,npm7n>
m=1

= Z log ImnPmn + (02 + Z gj,npj:”> (19)
J#Fm

~
aggregate interference + noige

(.

Denote by¢,, , the term (02 + > itm gjmpj,n), which represents the aggregate interference plus
noise to usern’s signal on sub-channel. Now, the potential function* is a common utility
for all players in the potential game.

In order to find the single-user best-response in the pategime, one needs to solve the

following maximization problem:

N
max v* (P, Pom) € max Y _10g (G + JmnPmn)
Pm Pm —
N
St Y Pun < PR (20)
n=1
Pmn >0, Vn

Only when the private channel gaif), = {g.1,- ... g~} and the aggregate interference plus
noise ¢, = {Gma,---, ¢} are both known to playem, (20) can be solved as a convex
optimization. It is easy to verify that this single-user taessponse is the same waterfilling

solution expressed in](8), due to the property of potentiatfion.

B. Distributed algorithm and convergence property

Note also that if each AP has complete knowledge of the cHastage information, i.e.,
the matrixG (as considered in Section Il), the uniqueness of the NasHil@gqum guaranties
that each AP can determine independently in a decentralimgdthe power allocation at the
Nash equilibrium. In order to acquire information about #igle channel matrixz is typically
necessary a feedback channel from MSs to APs to transmithizenel estimations. In fact, in
this case each AP can perform locally the best-responseithigodescribed in the following

section and based on repeated maximization of problein (2®tdorting from a random point

October 2, 2009 DRAFT



12

P-m € ]_[j 4m P- However, the structure of the problem {20) suggests annaltiee approach to
reduce eventually the signalling on the feedback channefadt, the repeated optimization of
problem [20) could be performed in a distributed way feediagk at the APs only the private
channel gaing,, and the aggregate interference plus najse Nevertheless, note that such a
distributed implementation of the algorithm would lead tdemporary phase where the APs
are not transmitting at an equilibrium point. In our numaticesults we will ignore the cost of
feedback, and we focus on analyzing the theoretic uppendou

From the above discussion, we introduce a simple algorithset on the iterative waterfill-

ing [28] that players can follow to reach the NE

Algorithm 1 DPIWF algorithm

initialize t = 0, p'Yy =0, Vm Vn
repeat
t=t+1
for m =1to M do
forn=1to N do

t t
G =02+ X gjap )

j#m
end for

Zn Pm,nSPm

P | =g max S log (G + g
end for

until convergence

In this algorithm, we assume that the same game could be wslopiplayed repeatedly:
in each round, every myopic player (player has no memory st game-rounds) chooses its
best-response according to the single-player waterfillag depends on the current state of the

game. The following theorem shows the convergence and aptynof the algorithm.

Theorem 4.2: The DPIWF algorithm converges to a Nash equilibrof the OFDM non-

cooperative gamé.

The proof can be found in AppendiX F.

Although the final convergence (in power allocation) of DPI\lgFproved, one may wonder
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whether the convergence behavior of thetual total network ratgthe objective function in
(21)) coincide with the convergence behavior of the comasing potential function[(19). We
will discuss this issue in our simulation part.

A more general discussion about the convergence propeftipstential games can be found
in [22], where it shows that every bounded potential gaimes theapproximate finite improve-
ment property(AFIP), i.e., for everye > 0, every e-improvement path is finite. Then, it is
obvious that every such finite improvement path of the exat¢mial games terminates in an
e-equilibriunH point. In other words, thesequential best-respongplayers move in turn and
always choose a best-response) converges te-dwpiilibrium independent of the initial point.
Note that this is a very flexible condition for the convergensinceorder of playing can be
deterministic or random and need not to be synchronideds one of the most interesting
properties of the potential games, especially in order stributively find the equilibrium in
self-organizing systems.

It is not difficult to find that thesimultaneous best-responés each iteration, all the players
choose their best-responses simultaneously) does nossadg converges, due to the “ping-
pong” effect generated by myopic players. However, [23] slagwn that for infinite pseudo-
potential games (a general case of exact potential gam#éscamnvex strategy space and single-
valued best-resporiehe sequence of simultaneous best-response (reminisicictitious play)
also converges to the equilibrium.

It is interesting to note that for many practical systemshwihite transmit power states,
the similar results still hold for the convergence of the usedial best-response. The only
difference is that, in the finite case, the existence of epattntial function implies théinite
improvement propertyFIP), and therefore, the sequential best-response aewdo the exact

Nash equilibrium (instead aof-equilibrium).

V. NUMERICAL EVALUATION

In this part, numerical results are provided to validate thaoretical claims. We consider

frequency-selective fading channels with channel ma#inf size M x N, whereM is the total

2A game is called a bounded game if the payoff functions are bounded.
3An e-equilibrium is a strategy profile that approximately satisfies the conditionashNequilibrium.

4Games with strictly multi-concave potential (concave in each players’ urilateviation) have single-valued best-response
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number of transmitters (players) andis the total number of receivers. We assume the Rayleigh
fading channel gaim,,,, arei.i.d. among players and for different sub-channels. The maximum
power constraint for each playet is asummed to be identical and normalizedR3s= 1.

In Fig.[3, we show the convergence behaviors of potentiadtfan and the actual total network
rate (we will use the short term “actual rate”) by using thegwsed DPIWF algorithm for a
random channel realization. We set the number of transmitte’)/ = 10 and the number of
receivers toN = 10. As expected, in both Fig. Ba and Fig. 3b the potential fumctionverges
rapidly (at the4' iteration). In Fig.[3h, the actual rate converges slightbwer (at the6”
iteration) and maintains the monotonically increasingpsldHowever, in Fig._3b, the actual rate
finally converges, but unfortunately it neither monototlicancreases nor rapidly converges (at
the 34" iteration) comparing to the convergence speed of its pialefunction. Note that we
use this example in order to show readers that a “defectie@Vergence (for the actual rate)
may happen during the iteration steps of DPIWF algorithm,re&g (we will show immediately
that) the actual rate converges “ideally” in most cases foarlom channel gain matrix with
i.i.d. Gaussian entries.

In order to measure the performance efficiency of distrithuetworks operating at the unique
NE, we provide here the optimal power allocation strategyc@mtralized approaches as a
target upper-bound for the total network rate (which is trengmit sum-rate of all players
in the network). We will ignore the performance loss due @ tiecessary uplink and downlink

signalling transmission. The total network rate maximaatroblem can be formulated as

M
max mz—lum (p)
St. > Pumn < P, Ym (21)

which unfortunately is a difficult problem, since the objeetfunction is non-convexin p.
However, a relaxation of this optimization problem (seelig]) can be considered as a geometric
programming problem [27], therefore, can be transformeéd @nconvex optimization problem.
A low complexity algorithm was proposed in [12] to solve thaatl problem by updating
dual variables through a gradient descent. Note that theriligh always converges, but may

converges to a local maximum point in a few cases. We will bisealgorithm in our simulations.
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In the following part, we will address two main practical gtiens through numerical results:

1) How does the network performance behave at the unique INEd@centralized optimality)
in comparison to the global optimal solution (the centedinptimality)? More precisely,
we are interested in comparing theeragetotal network rate instead of thestantaneous
total network rate, i.eu(M, N) is the average total network rate for)d transmitters and

N receivers system,

u(M,N) =Eg

i PmnGmn

2) What about the convergence behavior for the actual totalark rate when using DPIWF

algorithm? Does it converge rapidly (as in Fig] 3a) for mates?

Let's consider the first question. In Fig. 4, we compare theraye total network rate of both
decentralizedand centralizednetworks for two different channel noise levet$ = 0.1 and 1,
respectively. Network parameters are selected as folltvesnumber of transmitter®/ € [1, 25],
the number of receiverd’ takes several representative values, such, &8 and 15. The plots
are obtained through Monte-Carlo simulations oVt realizations for the channel gain matrix
G. First, we can see in both figures Flgl] 4a and [Fig. 4b, the a@lergd optimality always
outperforms the decentralized optimality. Second, for adixumber of transmitterd’, when
we increase the number of receivéi§ the performance loss of decentralized systems (compare
to centralized systems) becomes more and more apparenacinthis phenomenon can be
intuitively understood as followswvhen there are a great number sélfish players, the hostile
competition turns the multi-user communication system amt interference-limited environment,
where interference begins to dominate the performance esffigi

Moreover, we note that in Figl 4 the average performance mifakzed systems is an increas-
ing function of M (for a fixed value ofV), and the average performance of decentralized systems
corresponding to NE show an increasing slope before ditmimgsand reaching convergence. For
the typical values ofV, i.e., N = 5,10 and15, in Fig.[4a&, whenr? = 0.1 the average performance
of decentralized systems are maximized approximately/at 4,9, 14, respectively; in Figl_4b,
wheno? = 1 the average performance of decentralized systems are nzaximpproximately
at M = 6,11, 16, respectively. It simply shows that different noise vacar{in general channel

condition) have a different impact on the decentralizedesysperformance. This observation is
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fundamentally important for improving the spectral effiig of a distributed multi-user OFDM
hot-spot networkfor a given area (given the number of receivéysand the current channel

condition), there exists an optimal number of hot-spotsi¢ded as)/*) to be put in the network.

Roughly speaking: whem/ > M*, the system igverloadeddue to the increase of competition
over limited resources; when/ < M*, the system is operated at tlhwasaturatedstate, since

system resources are not fully exploited.

Let's now consider the second question. In Fi. 5, we showptiobability of convergence
to the decentralized optimality (NE) withif iterations foro? = 0.1 and 1, respectively. To be
more precise, we define the “convergence” as: the total nmktvade exceed89% performance
of the final rate. We find that the probability of convergenseguite satisfactory (more than
98.2% in all cases), and this convergence probability tendswhenM > N andM < N. An
interesting observation is that the minimal convergenobdgbility always occurs whef/ = N,

regardless of the noise variance vakie

VI. CONCLUSIONS ANDFUTURE WORKS

In this paper we described the wireless small-cell netwa&sa strategic non-cooperative
game. Each transmitter (AP) is modeled as a player in the geintedecides, in a distributed
way, the strategy of how to allocate its total power througbesal independent fading channels.
We studied the existence and uniqueness of NE. Under thdtmondf independent continuous
fading channels, we showed that the probability of the dmuuim being unique is equal tb.
Convergence issues have been addressed based on potem@abgalysis. Numerical studies
have shown that, with very high probability, the DPIWF altjum converges t69% of the final

rate unders iterations.

APPENDIX
A. Proof of Theoreri 313

Proof: We prove the necessary and sufficient parts separately.

1) Proof of necessary condition (the only if parffrom the definition of NE (Definition
B.7), if a power set{p,,} is a NE, it must satisfy all the best-response conditions in
(@) simultaneously. Suppose a situation that all the pEypower except playern’s

power reaches the NE poin{tp{, e D1 Pms D15 - - - ,pjw}. In this case when all other
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players’ powers are fixed, as shown[ih (4), the best-respoinglayerm is to set its power
according to(8), which is exactly given by the single-player waterfillingating all other
players’ signals as noise.

Proof of sufficient condition (the if partfFrom convex optimization theory [6], we know
that the KKT conditions of the convex optimization problene aecessary and sufficient
conditions for optimality. Therefore, we can say that a posteategyp,, satisfies the best
response condition if and only if it satisfies the singleyplaKKT conditions [5){(). Then
collectively, we say a sefp,,} satisfies all the best-response conditions simultaneously
if and only if it satisfies [(I0)E(D2). From Definition_3.1, if set {p,,} satisfies all the
best-response conditions, it must be a NE.

This completes the proof. [ |

B. Proof of Lemm&a 314

Proof: Consider a NEp € REV*! from Theoreni 313, the following equation is true

dp(p)+v—A=0

where

g1,1

o2+ pjigj1 B T B 7
7 V11 (M) w1
g1,2

o2+>.pj,195,1 V12 (A2) w1

gb (p) = J UV = )\ =

9K,N % A

RS I L VRN T N [ (M) | KNx1

L J Jd KNx1

Now, assume there exist two different Nash equilibria, @4.p' (p° # p'), the following

equation must also hold

Po L =0 (22)
p
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from where we have

_ i Ikn pk n — i n) ZJK 1 [gjvn (p?,n N paln)]
= (2 + XIS g ) (02 + 205 pLgin)

ZK ) ( 0o _ 1 ) 2
j=19in \Pjn ~ Pjn
K K

>0

and

ozT7 _ (pl . pO)T (yo . )\0) + (po . pl)T (Vl . )\1)

N K
= Z Z pkn kn )\0) ( 2,71 - pllc,n)(yli,n - )\116):|
n=1 k=1
K N N N K
=Y (Zp;i,n - Zp%n> M= AD |+ DD (Pl + Pia¥in)
k=1 n=1 n=1 P n=1 k=1
Py Pr=0
N K
=D > (Pl + Pia¥in) 20
n=1 k=1

From above, it is easy to see thhf](22) holds if and only if weeha"3 = 0 and o™y = 0,

which are equivalent to the following two equations, respety,

K K
> Gknbin = Y Gknbhn = 0, Vn (23)
k=1 k=1

p%nu,i’n = p,lf,ny,gm = 0, VnVEk (24)

First, from [23), we observe that the value ©f (= 3", gx.nprn) is fixed for any NE point.
Second, for a specific positive power coefficient, gj.,. > 0, we must have/). .. = 0 due
to (), therefore, from[(24) we must also hawg ,. = 0. This implies \;. = \}. because of
@). Finally, we obtain). , = v;. , Vn, since we have shown thaj is fixed for any NE point.

The same proof holds for any other index [ |
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C. Proof of Lemm&3l5

Proof: Whenuv,,,, =0, from (8) we have
Am = Gmndn =0, ¥(m,n) € X (25)

whered, = # From Lemmd_3J4, we know that all the Nash equilibria musisga{25),
with the same\,, andd,,. In (28), the number of independent linear equationstis while the
number of unknown parametersig-+ N (since the rest of,,, n ¢ N is known to bed, = %).
It is well known that the solution to the system of linear etpuzs is the empty set, if the number
of independent equations is larger than the number of Vasali8]. Since each entry,, ,, is
i.i.d. random, it is obvious that, with probability, the equations in(25) are independent from

each other, therefore, we must haw] < M + N. n

D. Proof of Lemma& 316

Proof: We only give the proof for case) M N > M + N, case2) MN < M + N can be
proved in a similar way. Matri¥Z can be transformed into 2x 2 block matrices, by applying

some elementary column and row operations, as follows,

Z cole)n I, ATxéz C(Mn I, OT><€2 row I, OTX£2
B€1><T C§1><€2 B51><T C£1><§2 O£1><T C§1><£2

wherer = min{M,N}, & = M +N —7 > 71, & = |X| —7. Cis a& x & matrix, where
each column contains one or two random variables, and eacltontains at least one random
variable. Again we can transfor@ in row echelon form, denoted &3,. Note that the rank of
C, is & with probability 1, since each leading coefficient of a rownaisandom variable or the
linear combination of two i.i.d. random variables. So, wittobability 0, any leading coefficient

~

takes the value of 0. Therefore, we hawek(Z) = 7 + & = |X| with probability 1. u

E. Proof of Theorei 3.7

Proof: If MN > M+N, we have from Lemm@&3.5 that, with probabilityrhpk(Z) = |X|.
Any NE must satisfy[(17); assume that two different poweditsgiesp andp’ are both solutions
to (I7). ThenZ (p — p’) = 0. By the rank-nullity theorem [18], since the rank Bfis equal to

the number of its columns, this impligs— p’ = 0, which means there must be exactly one NE.
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If MN < M + N, we have from Lemma_ 3.6 that, with probability there is at most one

solution to [16). Since any NE must satisfy [(16) and we knout there is at least one NE

solution, so the NE must be unique. [ |

F.

Proof of Theoreni 412

Proof: We prove this theorem in two steps.

1) Algorithm convergencdt is easy to see that the potential function(P) is non-decreasing
within each round of the single-player waterfilling. Moreoysince each player’s transmit
power is limited by a maximum but finite power constraintréhmust exist an upper-bound
for the potential function* (P). This confirms the convergence.

2) Converge to NEFrom the discussions above, we directly have that the KKidimn of
the potential game coincide with the KKT condition of thegimal OFDM gameg, due
to the property of potential functiof (1L8). By using the suéiit part of Theorerh 313, we
know that if each player’'s power allocatig), is given by the single-player waterfilling
while treating other players’s signals as noise, the{get} must be a NE of the original
gameg. Therefore, we can conclude that if the algorithm DPIWF coges (through the

process of iterating single-player waterfilling), it musingerge to a NE point.

This completes the proof. [ |
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Fig. 2 The multi-user OFDM model
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