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Abstract—We consider the uplink mobile association game dimensionality problems [16]. The discrete modeling appgto
with a large nu_mber of mobi_le t_erminals. Traditional techniqges is Commomy adopted for the detailed p|anning and ana|yf5is o)
consider the discrete modelization but these models lead tugh 6 network. The continuum modeling approach is used for the
combinatorial complexities. S . L2

Thanks to optimal transport theory we are able to characterize |n|t|ql phase Qf pIan_nlng and modelllng in broad-scale meglio
the cell formation as well as the equilibrium properties of he Studies. In this setting, the focus is on the general trerttl an
network where intelligent mobile terminals decide by themslves pattern of the distribution of the location of the users (@thi
to which base station upload their information. ~can be given in an hour-by-hour or day-by-day situation or

We determine closed form expressions for the cell formation ih e temporal pattern). The continuum modeling approash h
and we illustrate numerically these cell formations in the me- - : .
and two-dimensional cases. many advantages over the discrete approach in macroscopic

studies of dense networks. First, it reduces the problem siz
|. INTRODUCTION for dense networks. The problem size in the continuum model

Future wireless networks will be composed by intelligerdepends only on the method that is adopted to approximate
mobile terminals capable of accessing multiple radio accebe modeled region, but not on the actual network itself.
technologies and capable of deciding by themselves the wiflghis reduction in problem size saves computational time and
less access technology to use and the access point to whitdmory. Second, less data is required to model the set-
to connect. Within this context, we study the uplink mobilep in a continuum model. As continuum modeling can be
association game where we determine the cells correspgndiharacterized by a small number of spatial variables, it can
to each base station, or the locations at which intelligebe set-up with a much smaller amount of data than the
mobile terminals prefer to connect to a given base statidiiscrete modeling approach, which requires data for alhef t
rather than to others. We consider that these capabilliesld included links. This makes the continuum model convenient
be taken into account in the design and strategic planningfof macroscopic studies in the initial phase of design sthee
wireless networks. collection of data in this phase is time consuming and labor

Starting from the seminal paper of Hotelling [9] a largéntensive, and the resources to undertake it are generatly n
area of research on location games has been developed. a¥@ilable, which means there is usually insufficient data on
paper [9] introduced the notion of spatial competition in the system to set up a detailed model. Finally, the continuum
duopoly situation. Plastria [13] presented an overviewha t modeling approach gives a better understanding of the globa
research on locating one or more new facilities in an enwharacteristics of a network.
ronment where competing facilities already exist. Gabszew Within this context, we propose a new framework for
and Thisse [8] provided another general overview on locatithe mobile association problem using optimal transport the
games. Altman et al. [1] studied the duopoly situation iory (See [17] and references therein), a theory initiated by
the uplink case in a line segment and realized that with tiMonge [12] and Kantorovich [10] that has prove to be useful
particular cost structure that arises in the cellular cantgore  on many economical contexts [3], [5], [4]. It is a stylized
complex cells are obtained at equilibrium. The authors df [Lmodel but it contains important dependences, such as the
and [15] examined the downlink mobile association problemumber of mobiles associated to each base station and on
under different policies. Our work focuses on the uplinkecaghe distance between the mobile terminal and the associated
and in a more general situation without any assumption on thase station. The continuation of this work should include
symmetry of the location of the users. We solve this problemany other important concepts in order to be applied in a real
for the one- and two-dimensional case. Traditional tealesg network, such as call dropping and call blocking probabsit
have been focus on the discrete modeling of these networkdhe remaining of this paper is organized as follows. Sec-
(where it is assumed that the location of the users is knowion Il presents the formulation of the uplink mobile associ
and deterministic). The main problem with these techniquéen problem. In Section Il we explain some basic concepts
is the highly combinatorial complexity leading to the cucde and properties in optimal transport theory. In Section IV we



TABLE |

NOTATION directly generalize this result by considering := x;. As
each cellC; of the network contain a large number of MT
N Total number of MTs in the network continuously distributed with a distribution of(z,y) then

the quantity of mobiles assigned to base statit®; will

be N; = N [J.. f(z,y)dzdy. Notice thaty X N, = N

f Deployment distribution of MTs so each MT is associated to one and only one BS in the
network. The power received at tiS; from a MT located at
position (x,y) is given by P;(x, y)h;(x,y) whereh;(x,y) is

K Total number of BSs

(x4,y;) | Position of thei-th BS

Ci | Cell determined by the-th BS the channel gain. We shall further assume that it correspond
N; Number of MTs associated to theth BS to the path loss given by (z,y) = (\/R? + d;(x, y)?)~¢

where ¢ is the path loss exponenR is the height of the

M; Number of carriers offered by thieth BS . . . .
Y base station, and;(z,y) is the Euclidean distance between

Ki Penalization function of non-service a MT at position (x,y) and BS; located at(z;,y;), i.e,
h; Channel gain function over theth cell di(z,y) = \/(xz - x)Q + (yi — )2 .
: In the one-dimensional case, Altmanal. [1] derived that
§& | Path loss exponent over thigh cell the SINR density of a MT located at transmitting to base
stationBS; located aty is given by
give some numerical examples with uniform and non-uniform SINR, (z) = (VR +(y—x)*)—* .
distribution of the users and both one- and two-dimensional Jp(WR2+ (y — 2)?)~¢dz + 02

settings. Section V concludes this work. where¢ is the path loss exponent andis a noise parameter.

Il. THE MODEL In this case, the authors of [1] considered the specific case

To the reader convenience, we summarize the notation u&é*bere there is a uniform d_|str|but|_on Of. the MTs a_nd a
on our work in Table . constant power. We generalize their setting by considering
a general deployment distribution of mobile termingils)

Consider a grid area network on the two-dimensional d | distributi hich d d th
plane which will be the geographical reference of the nef ¢ @ general power distribution which may depend on the

work. The mobile terminals (MTs) are distributed according®Sition®. given by P;(x). Then the problem reads
to an integrable distributiorf(x,y) scaled in the grid area SINR, (z) = Pi(z)(v/R?+ (y — 2)2)¢
network D so that [[,, f(x,y) dzdy = 1. Then, the number Nt B Pi(2)(RE+ (y — 2)2) ¢ f(2) dz + 02

of MTs in some part of the network ared C D, denoted ) . o _ :
by N(A) will be Following their derivation, this can be generalized for the

two-dimensional case

) = ([[ s dsay) S1NE (0 = P BT ) ¢
total g

wherg N is the totgl number (.)f MTs in the nemork'wheredi(x,y) is the distance betwedsS; and a MT located
The integral on the right hand side between brackets takélets(a7 ), and
into account the proportion of MTs distributed on the Y

area A. We assume that in this grid area network therep ._ // Pi(x /R2 + d.(z.9)2) "¢ (. v) dx dy.
are K base stations (BSs)3S;,BS,,...,BSk located at total D i@yl i@y (@) Y

positions(z1, y1), (2,42) - - -, (Tk, YK )- We want to guarantee an aversgjé&VR of O(z,y) to a MT

We consider that when a MT, located at positiony), |ocated at positior{z, y). This condition is written as
transmits to BS;, it uses power; (x, y). Each MT is going to

)

select only one BS according to some policy to be defined. We Pi(z,y) (VR + di(x,y)?) "¢ > O(, y).
denoteC; the cell associated S, that we want to determine. Piotal + 02 o

We denote byN; the quantity of mobiles that are assigned Then as the constraint will be reached it follows that
to base statioS;. If the quantity of mobiles is greater than . _ 2) (/R + di(z,5)°) ¢
some constant, denotdd (for example, the maximum number Pi(@,y) = O(2,) (Protar + 07) (V2 + di(, y)2)™
of possible carriers in Wi-Max is arour2)48, so in this case  And then our problem reads

we can consideM = 2048) then we consider a penalization

K
cost function MinE : Pi(z, ) f(2,y) dxdy
. Ci 4 C.
, 0 it N; < M, = Je,
given by ki(N;) =< _ . . . .
Ri(Ny — M) if N;> M. We denote this problem adJL) and replacing the power is
written as

We assume that; is a continuous and non-decreasing func-

tion. We analyze the cas&’; < M but thanks to the =
) o= Mi ) ) Po al 2 R2 dL ) 2yt ) dxd
problem (P1) described and solved in the following, we car@lin;//ci (@ 3)(Prorarto7)( i@, ) f (@) de dy



which is similar to an optimal transport problem. general this constraint may not be satisfied, but consigenn

In order to solve the problem of the uplink cadél we estimation of the packet loss by sending standard packstts te
will make use of Optimal Transport Theory, a theory that hdahis constraint can be modified in the reception meaguré
prove to be useful on many economical context [3], [5], [4we can not obtain a good estimation of this reception measure
as well as in the road traffic community [6], and the teleconwe can consider it in its current form as a conservative golic
munication community [15]. In the original problem, Monge considered that the cost
of moving a commodity from position: to a positiony

Il BASICS IN OPTIMAL TRANSPORTTHEORY depends on the distaneéz — y|). Then the cost of moving a

The theory of mass transportation, also called optimgbmmodity from position: through? to its new positiorl’(z)
transport theory, goes back to the original works by Monge {gill be (| — T'(z)|). For the global optimization problem,
1781 [12], and later in 1942 by Kantorovich [10]. we consider the additive total cost over the network, whith i

The work by Brenier [2] has renewed the interest for thye continuum setting will be given by
subject and since then many works have been done in this

topic (see [17] and references therein). Min/ c(le — T(x)]) f(z)dx such that TH#p=wv.
The original problem of Monge can be interpreted as the D -
question: where ;o and v are probability measures arid : D — D

B . . ' is an integrable function. This problem is known as Monge’s
How do you best move given piles of sand to fill . )
problem in optimal transport theory.

M t?ll A A N ) X A
up g|v.en holgs of the sgme totallvc?lume. ) The main difficulty in solving Monge’s problem is the
In our setting, this problem is of main importance. SUPPO$yhIy non-linear structure of the objective function. aam-
that mobile terminals are sending information to basemtati ples on the limitations on Monge's modelization, see [15& W
in a grid area network and positions of mobile terminals a%inted out the limitations of Monge’s problem that motat

base stations are given. Kantorovich to consider another modeling of this problem
What is the “best move” of information from the in [10].
MTs to the BSs? Kantorovich noticed that the problem of transportatiomfro
Both questions share similarities as we will see. one location to another can be seen as “graphs of functions”

The general mathematical framework to deal with thigalled transport plans) in the product space (See Fig. 1).
problem is a little technical but we encourage to jump the ggg
details and to focus on the main ideas.

The framework is the following:

We first consider a grid area netwoR in the one-
dimensional case. As an example, the functfgn) will rep-
resent the proportion of information sent by mobile terrfgna

du(t) == f(t)dt. E

The functiong(s) will represent the proportion of information
received by a base station at location @

dv(s) := g(s) ds.

The functionT (called transport map) is the function that
onom oraton i T [o] Ts]
A

transfers information from locatios to locationt. It assigns
mobile terminals to base stations and transport informatio
from mobile terminals to base stations. Then the conditions

. . s e . . .. Fig. 1. Kantorovich considered “graphs” where the progttin the first
that each mobile terminal satisfies its uplink demand istemit axis coincide with the mobile terminal positioM(Ty = 3.5, MT5 = 5 and

MT3 = 6.5) and the second axis coincides with the base station positio

/ g(y)dy = / flz)dz (BS1 = 4 and BS; = 6).
A {z:T(z)eA}

The idea is to minimize over the space of graphs
g= (Id x T) in the product space. Then with the condition
that each mobile terminal satisfies its uplink demand ant tha
the information is received at the base stations, Kantohiwi

for all continuous functionF', where X is the suppott of
function f and we denote this condition (following the optima
transport theory notation) as

TH#p=v. problem reads
which is an equation of conservation of the information.ibit Min // c(z,y) dg(z,y)
that, in communication systems there exists packet loss so i gell(p,v) JJDxD
where

1The support of a functiory is the closure of the set of points where the
function is not zeroj.e,, support(f) = {t : f(t) # 0} M(p,v) ={g : m#g=p and m#g =v}



is denoted the ensemble of transport plans; (z,y) stands BE ol Bdares e BSL S0V postion o B52

for the projection on the first axis, andms(z,y) stands for 3
the projection on the second axjs
The relationship between Monge and Kantorovich problems
is that every transport mdp of Monge’s problem determines
a transport plaryr = (Id x T)#p in Kantorovich's problem
with the same cost (wherkl denotes the identity). However,
Kantorovich'’s problem considers more functions than theson
coming from Monge’s problem (which can always be viewed .
as the product of the identity and the mdjf), so we can ‘i
choose from a bigger sét(y, v). R I e
Then every solution of Kantorovich’s problem is a lower

Cell Boundaries when BS1 is at O

bound to Monge’s probleni,e., Fig. 2. 2 BSs
Min // C(I, y) dg(I, y) S Cell Boundaries with uniform distribution
g€Il(p,v) JJDxD T
< Min / c(le — T(x)]) f(z) da. ] .
T#Hu=v Jp

Theorem Consider the cost functiod(|x — y|) = |« — y[P.
Let x andv be probability measures ib and fixp > 1. We
assume thap: can be writted asdy = f(x)dz. Then the
optimal value of Monge’s problem coincides with the optimal
value of Kantorovich's problemi.e, M,(u,v) = Wy,(u,v) .
and there exists an optimal transport map frorto v, which i
is also unique almost everywherepf> 1. NI N I R R R N

This result is very difficult to obtain and it has been proved
only recently (see [2] for the cage= 2, and the references
at [17] for the other cases).

The case that we are interested in can be characterized

because the image of the transport plan is a discrete finfiere C; is the cell partition ofD. Suppose thatn, are

BS1is at —10 and BS2 is at 10

Fig. 3. 3 BSs

set. derivable. The probleniP2) admits a solution that verifies
Thanks to o.pf[imal transport theory we are able to (?harac— Ci= {z: mi(N)F(di(z,v)) f(z,9) + Ui(z,y)
tenzg the partmons on very general settings. I_:or domg o) < m (Nj) d ( ) f(z,y) + Uj(z, )}
consider |Ocatloni:v1,y1)é..,(xK,yKQ), th((aﬂfuclldetan dis- (S2) U, = J ffo x’y)) ooy ey
tanced;(z,y) = /(z — z; —y;)2, andF a continuous
function(. 9= e Ni = ffc (w,2) dwdz
Theorem Consider the probleniP1) Notice that in problem(P1) if the functionss; = 0 the

solution of the systeniS1) becomes the well known Voronoi
MmZ// { (2.9)) + 5: (/ f(w,2) dwdz)} F(z,y) dx dyCENIS- In problem(P2) if we have that the functions; = 1

we find again the Voronoi cells. However in all the other cases

the Voronoi configuration is not optimal. The proofs of both

whereC; is the cell partition ofD. Suppose that; are con- theorems are given in [14].

tinuously differentiable, non-decreasing, and convexfioms.
The problem(P1) admits a solution that verifies

Ci= Ax: F(di(z,y)) + si(Ni) + N; - sj(N;)
(S1) < F(d (z,y)) + 55 (N;j) + Nj - s5(N;) }
N; = ffc (w,2) dwdz.

BE : Cell Boundaries when BS1 is at 0 vs position of BS2

Theorem Consider the probleniP2)

Némi//c {F(di(m’y))'mi (/C flw,z) dquz)] f(z,y) dzdy,

2The exact condition is that is absolutely continuous with respect to the _ o ] S
Lebesgue measuré® whered is the dimension of the space. Fig. 4. Cell Boundaries in Non-Uniform distribution

Cell Boundaries when BS1 is at 0
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factor. The latter situation can be interpreted as the tiitna
when mobile terminals are more concentrated in the centér an
less concentrated in suburban areas as in Paris, New York or
London. We observe that the cell size of the base stadien

at the center is smaller than the others at the suburban. areas
This can be explained by the fact that as the density of users
is more concentrated in the center the interference is great
in the center than in the suburban areas and thelSEN® is
smaller in the center. However the quantity of users is great
than in the suburban areas.

V. CONCLUSIONS

We have studied a uplink mobile association game. We

determined the location at which intelligent mobile teraig
prefer to connect to a given base station rather than to @ather
Thanks to our proposed approach using optimal transport
theory for mobile association we are able to completely
characterize the mobile association and the cell formation
under different policies from the mobile terminals point of

view and as well as from the global system point of view.
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