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Abstract—We consider the uplink mobile association game
with a large number of mobile terminals. Traditional techniques
consider the discrete modelization but these models lead tohigh
combinatorial complexities.

Thanks to optimal transport theory we are able to characterize
the cell formation as well as the equilibrium properties of the
network where intelligent mobile terminals decide by themselves
to which base station upload their information.

We determine closed form expressions for the cell formation
and we illustrate numerically these cell formations in the one-
and two-dimensional cases.

I. I NTRODUCTION

Future wireless networks will be composed by intelligent
mobile terminals capable of accessing multiple radio access
technologies and capable of deciding by themselves the wire-
less access technology to use and the access point to which
to connect. Within this context, we study the uplink mobile
association game where we determine the cells corresponding
to each base station, or the locations at which intelligent
mobile terminals prefer to connect to a given base station
rather than to others. We consider that these capabilities should
be taken into account in the design and strategic planning of
wireless networks.

Starting from the seminal paper of Hotelling [9] a large
area of research on location games has been developed. His
paper [9] introduced the notion of spatial competition in a
duopoly situation. Plastria [13] presented an overview of the
research on locating one or more new facilities in an envi-
ronment where competing facilities already exist. Gabszewicz
and Thisse [8] provided another general overview on location
games. Altman et al. [1] studied the duopoly situation in
the uplink case in a line segment and realized that with the
particular cost structure that arises in the cellular context more
complex cells are obtained at equilibrium. The authors of [14]
and [15] examined the downlink mobile association problem
under different policies. Our work focuses on the uplink case
and in a more general situation without any assumption on the
symmetry of the location of the users. We solve this problem
for the one- and two-dimensional case. Traditional techniques
have been focus on the discrete modeling of these networks
(where it is assumed that the location of the users is known
and deterministic). The main problem with these techniques
is the highly combinatorial complexity leading to the curseof

dimensionality problems [16]. The discrete modeling approach
is commonly adopted for the detailed planning and analysis of
the network. The continuum modeling approach is used for the
initial phase of planning and modeling in broad-scale regional
studies. In this setting, the focus is on the general trend and
pattern of the distribution of the location of the users (which
can be given in an hour-by-hour or day-by-day situation or
other temporal pattern). The continuum modeling approach has
many advantages over the discrete approach in macroscopic
studies of dense networks. First, it reduces the problem size
for dense networks. The problem size in the continuum model
depends only on the method that is adopted to approximate
the modeled region, but not on the actual network itself.
This reduction in problem size saves computational time and
memory. Second, less data is required to model the set-
up in a continuum model. As continuum modeling can be
characterized by a small number of spatial variables, it can
be set-up with a much smaller amount of data than the
discrete modeling approach, which requires data for all of the
included links. This makes the continuum model convenient
for macroscopic studies in the initial phase of design sincethe
collection of data in this phase is time consuming and labor
intensive, and the resources to undertake it are generally not
available, which means there is usually insufficient data on
the system to set up a detailed model. Finally, the continuum
modeling approach gives a better understanding of the global
characteristics of a network.

Within this context, we propose a new framework for
the mobile association problem using optimal transport the-
ory (See [17] and references therein), a theory initiated by
Monge [12] and Kantorovich [10] that has prove to be useful
on many economical contexts [3], [5], [4]. It is a stylized
model but it contains important dependences, such as the
number of mobiles associated to each base station and on
the distance between the mobile terminal and the associated
base station. The continuation of this work should include
many other important concepts in order to be applied in a real
network, such as call dropping and call blocking probabilities.

The remaining of this paper is organized as follows. Sec-
tion II presents the formulation of the uplink mobile associa-
tion problem. In Section III we explain some basic concepts
and properties in optimal transport theory. In Section IV we



TABLE I
NOTATION

N Total number of MTs in the network

K Total number of BSs

f Deployment distribution of MTs

(xi, yi) Position of thei-th BS

Ci Cell determined by thei-th BS

Ni Number of MTs associated to thei-th BS

Mi Number of carriers offered by thei-th BS

κi Penalization function of non-service

hi Channel gain function over thei-th cell

ξi Path loss exponent over thei-th cell

give some numerical examples with uniform and non-uniform
distribution of the users and both one- and two-dimensional
settings. Section V concludes this work.

II. T HE MODEL

To the reader convenience, we summarize the notation used
on our work in Table I.

Consider a grid area networkD on the two-dimensional
plane which will be the geographical reference of the net-
work. The mobile terminals (MTs) are distributed according
to an integrable distributionf(x, y) scaled in the grid area
networkD so that

∫∫

D
f(x, y) dx dy = 1. Then, the number

of MTs in some part of the network areaA ⊆ D, denoted
by N(A) will be

N(A) = N

(
∫∫

A

f(x, y) dx dy

)

where N is the total number of MTs in the network.
The integral on the right hand side between brackets takes
into account the proportion of MTs distributed on the
area A. We assume that in this grid area network there
are K base stations (BSs):BS1,BS2, . . . ,BSK located at
positions(x1, y1), (x2, y2) . . . , (xK , yK).

We consider that when a MT, located at position(x, y),
transmits to aBSi, it uses powerPi(x, y). Each MT is going to
select only one BS according to some policy to be defined. We
denoteCi the cell associated toBSi that we want to determine.
We denote byNi the quantity of mobiles that are assigned
to base stationBSi. If the quantity of mobiles is greater than
some constant, denotedM (for example, the maximum number
of possible carriers in Wi-Max is around2048, so in this case
we can considerM = 2048) then we consider a penalization
cost function

given by κi(Ni) =

{

0 if Ni ≤ M,
κ̄i(Ni −M) if Ni > M.

We assume that̄κi is a continuous and non-decreasing func-
tion. We analyze the caseNi ≤ M but thanks to the
problem (P1) described and solved in the following, we can

directly generalize this result by consideringsi := κi. As
each cellCi of the network contain a large number of MT
continuously distributed with a distribution off(x, y) then
the quantity of mobiles assigned to base stationBSi will
be Ni = N

∫∫

Ci

f(x, y) dx dy. Notice that
∑K

i=1 Ni = N
so each MT is associated to one and only one BS in the
network. The power received at theBSi from a MT located at
position (x, y) is given byPi(x, y)hi(x, y) wherehi(x, y) is
the channel gain. We shall further assume that it corresponds
to the path loss given byhi(x, y) = (

√

R2 + di(x, y)2)
−ξ

where ξ is the path loss exponent,R is the height of the
base station, anddi(x, y) is the Euclidean distance between
a MT at position (x, y) and BSi located at (xi, yi), i.e.,
di(x, y) =

√

(xi − x)2 + (yi − y)2.
In the one-dimensional case, Altmanet al. [1] derived that

the SINR density of a MT located atx transmitting to base
stationBSi located aty is given by

SINRi(x) =
(
√

R2 + (y − x)2)−ξ

∫

D
(
√

R2 + (y − z)2)−ξ dz + σ2
.

whereξ is the path loss exponent andσ is a noise parameter.
In this case, the authors of [1] considered the specific case
where there is a uniform distribution of the MTs and a
constant power. We generalize their setting by considering
a general deployment distribution of mobile terminalsf(x)
and a general power distribution which may depend on the
positionx, given byPi(x). Then the problem reads

SINRi(x) =
Pi(x)(

√

R2 + (y − x)2)−ξ

∫

D
Pi(z)(

√

R2 + (y − z)2)−ξf(z) dz + σ2
.

Following their derivation, this can be generalized for the
two-dimensional case

SINRi(x, y) =
Pi(x, y)(

√

R2 + di(x, y)2)
−ξ

Ptotal + σ2
,

wheredi(x, y) is the distance betweenBSi and a MT located
at (x, y), and

Ptotal :=

∫∫

D

Pi(x, y)(
√

R2 + di(x, y)2)
−ξf(x, y) dx dy.

We want to guarantee an averageSINR of Θ(x, y) to a MT
located at position(x, y). This condition is written as

Pi(x, y)(
√

R2 + di(x, y)2)
−ξ

Ptotal + σ2
≥ Θ(x, y).

Then as the constraint will be reached it follows that

Pi(x, y) = Θ(x, y)(Ptotal + σ2)(
√

R2 + di(x, y)2)
+ξ.

And then our problem reads

Min
Ci

K
∑

i=1

∫∫

Ci

Pi(x, y)f(x, y) dx dy

We denote this problem as(UL) and replacing the power is
written as

Min
Ci

K
∑

i=1

∫∫

Ci

Θ(x, y)(Ptotal+σ
2)(

√

R2 + di(x, y)2)
+ξ

f(x, y) dx dy



which is similar to an optimal transport problem.
In order to solve the problem of the uplink case (UL) we

will make use of Optimal Transport Theory, a theory that has
prove to be useful on many economical context [3], [5], [4],
as well as in the road traffic community [6], and the telecom-
munication community [15].

III. B ASICS IN OPTIMAL TRANSPORTTHEORY

The theory of mass transportation, also called optimal
transport theory, goes back to the original works by Monge in
1781 [12], and later in 1942 by Kantorovich [10].

The work by Brenier [2] has renewed the interest for the
subject and since then many works have been done in this
topic (see [17] and references therein).

The original problem of Monge can be interpreted as the
question:

“How do you best move given piles of sand to fill
up given holes of the same total volume?”.

In our setting, this problem is of main importance. Suppose
that mobile terminals are sending information to base stations
in a grid area network and positions of mobile terminals and
base stations are given.

What is the “best move” of information from the
MTs to the BSs?

Both questions share similarities as we will see.
The general mathematical framework to deal with this

problem is a little technical but we encourage to jump the
details and to focus on the main ideas.

The framework is the following:
We first consider a grid area networkD in the one-

dimensional case. As an example, the functionf(t) will rep-
resent the proportion of information sent by mobile terminals

dµ(t) := f(t) dt.

The functiong(s) will represent the proportion of information
received by a base station at locations

dν(s) := g(s) ds.

The functionT (called transport map) is the function that
transfers information from locations to locationt. It assigns
mobile terminals to base stations and transport information
from mobile terminals to base stations. Then the conditions
that each mobile terminal satisfies its uplink demand is written

∫

A

g(y) dy =

∫

{x : T (x)∈A}

f(x) dx

for all continuous functionF , whereX is the support1 of
functionf and we denote this condition (following the optimal
transport theory notation) as

T#µ = ν.

which is an equation of conservation of the information. Notice
that, in communication systems there exists packet loss so in

1The support of a functionf is the closure of the set of points where the
function is not zero,i.e., support(f) = {t : f(t) 6= 0}

general this constraint may not be satisfied, but considering an
estimation of the packet loss by sending standard packets test,
this constraint can be modified in the reception measureµ. If
we can not obtain a good estimation of this reception measure,
we can consider it in its current form as a conservative policy.

In the original problem, Monge considered that the cost
of moving a commodity from positionx to a position y
depends on the distancec(|x− y|). Then the cost of moving a
commodity from positionx throughT to its new positionT (x)
will be c(|x − T (x)|). For the global optimization problem,
we consider the additive total cost over the network, which in
the continuum setting will be given by

Min

∫

D

c(|x − T (x)|) f(x) dx such that T#µ = ν.

whereµ and ν are probability measures andT : D → D
is an integrable function. This problem is known as Monge’s
problem in optimal transport theory.

The main difficulty in solving Monge’s problem is the
highly non-linear structure of the objective function. Forexam-
ples on the limitations on Monge’s modelization, see [15]. We
pointed out the limitations of Monge’s problem that motivated
Kantorovich to consider another modeling of this problem
in [10].

Kantorovich noticed that the problem of transportation from
one location to another can be seen as “graphs of functions”
(called transport plans) in the product space (See Fig. 1).

A

AA B

B

B

C

CC

D

DD

MTs

BSs

Fig. 1. Kantorovich considered “graphs” where the projection in the first
axis coincide with the mobile terminal position (MT1 = 3.5, MT2 = 5 and
MT3 = 6.5) and the second axis coincides with the base station position
(BS1 = 4 andBS2 = 6).

The idea is to minimize over the space of graphsg.
g = (Id × T ) in the product space. Then with the condition
that each mobile terminal satisfies its uplink demand and that
the information is received at the base stations, Kantorovich’s
problem reads

Min
g∈Π(µ,ν)

∫∫

D×D

c(x, y) dg(x, y)

where

Π(µ, ν) = {g : π1#g = µ and π2#g = ν}



is denoted the ensemble of transport plansg, π1(x, y) stands
for the projection on the first axisx, andπ2(x, y) stands for
the projection on the second axisy.

The relationship between Monge and Kantorovich problems
is that every transport mapT of Monge’s problem determines
a transport plangT = (Id× T )#µ in Kantorovich’s problem
with the same cost (whereId denotes the identity). However,
Kantorovich’s problem considers more functions than the ones
coming from Monge’s problem (which can always be viewed
as the product of the identity and the mapT ), so we can
choose from a bigger setΠ(µ, ν).

Then every solution of Kantorovich’s problem is a lower
bound to Monge’s problem,i.e.,

Min
g∈Π(µ,ν)

∫∫

D×D

c(x, y) dg(x, y) ≤

≤ Min
T#µ=ν

∫

D

c(|x− T (x)|) f(x) dx.

Theorem Consider the cost functionc(|x− y|) = |x− y|p.
Let µ andν be probability measures inD and fix p ≥ 1. We
assume thatµ can be written2 as dµ = f(x) dx. Then the
optimal value of Monge’s problem coincides with the optimal
value of Kantorovich’s problem,i.e., Mp(µ, ν) = Wp(µ, ν)
and there exists an optimal transport map fromµ to ν, which
is also unique almost everywhere ifp > 1.

This result is very difficult to obtain and it has been proved
only recently (see [2] for the casep = 2, and the references
at [17] for the other cases).

The case that we are interested in can be characterized
because the image of the transport plan is a discrete finite
set.

Thanks to optimal transport theory we are able to charac-
terize the partitions on very general settings. For doing so,
consider locations(x1, y1) . . . , (xK , yK), the Euclidean dis-
tancedi(x, y) =

√

(x − xi)2 + (y − yi)2, andF a continuous
function.

Theorem Consider the problem(P1)

Min
Ci

K
∑

i=1

∫∫

Ci

[

F (di(x, y)) + si

(∫∫

Ci

f(ω, z) dω dz

)]

f(x, y) dx dy,

whereCi is the cell partition ofD. Suppose thatsi are con-
tinuously differentiable, non-decreasing, and convex functions.
The problem(P1) admits a solution that verifies

(S1)







Ci = {x : F (di(x, y)) + si(Ni) +Ni · s
′
i(Ni)

≤ F (dj(x, y)) + sj(Nj) +Nj · s
′
j(Nj)}

Ni =
∫∫

Ci

f(ω, z) dω dz.

Theorem Consider the problem(P2)

Min
Ci

K
∑

i=1

∫∫

Ci

[

F (di(x, y)) ·mi

(
∫∫

Ci

f(ω, z) dω dz

)]

f(x, y) dx dy,

2The exact condition is thatµ is absolutely continuous with respect to the
Lebesgue measureLd whered is the dimension of the space.
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where Ci is the cell partition ofD. Suppose thatmi are
derivable. The problem(P2) admits a solution that verifies

(S2)















Ci = {x : mi(Ni)F (di(x, y)) f(x, y) + Ui(x, y)
≤ mj(Nj)F (dj(x, y)) f(x, y) + Uj(x, y)}

Ui = m′
i(Ni)

∫∫

Ci

F (di(x, y))f(x, y) dx dy

Ni =
∫∫

Ci

f(ω, z) dω dz.

Notice that in problem(P1) if the functionssi ≡ 0 the
solution of the system(S1) becomes the well known Voronoi
cells. In problem(P2) if we have that the functionshi ≡ 1
we find again the Voronoi cells. However in all the other cases
the Voronoi configuration is not optimal. The proofs of both
theorems are given in [14].

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

BS2

C
e

ll 
B

o
u

n
d

a
ri
e

s
 w

h
e

n
 B

S
1

 i
s
 a

t 
0

BE : Cell Boundaries when BS1 is at 0 vs position of BS2

Fig. 4. Cell Boundaries in Non-Uniform distribution
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IV. VALIDATION OF OUR THEORETICAL MODEL

A. One-dimensional case

We first consider the one-dimensional case and we consider
a uniform distribution of users in the interval[−10, 10]. We
set the noise parameterσ = 0.3. In Fig. 2, we fix one base
stationBS2 at position0 and take as parameter the position
of base stationBS1. We consider the path loss exponent
of ξ = 2. Red lines shows the positions of the BSs. We
are able to determine the cell boundary (solid blue curve)
from BS1 and BS2 at different positions. In Fig. 3 we fix
two base stationsBS1 = −10 andBS2 = 10 and we take as
parameter the position of base stationBS3. Red lines shows
the positions of the BSs. We determine the cell boundary (solid
blue curve) fromBS1 andBS3 and the cell boundary (dashed
blue curve) fromBS2 andBS3.

B. Two-dimensional case: Uniform and Non-Uniform distri-
bution of users

We consider the two-dimensional case. We consider the
square[−4, 4] × [−4, 4] and the noise parameterσ = 0.3.
We set five base stations at positionsBS1 = (−3,−3),
BS2 = (3,−3), BS3 = (−3, 3), BS4 = (3, 3), andBS5 =
(0, 0). We determine the cell boundaries for the uniform
distribution of MTs (see Fig. 5) and we compare it to the cell
boundaries for the non-uniform distribution of MTs given by
f(x, y) = (L2 − (x2 + y2))/K whereK is a normalization

factor. The latter situation can be interpreted as the situation
when mobile terminals are more concentrated in the center and
less concentrated in suburban areas as in Paris, New York or
London. We observe that the cell size of the base stationBS5
at the center is smaller than the others at the suburban areas.
This can be explained by the fact that as the density of users
is more concentrated in the center the interference is greater
in the center than in the suburban areas and then theSINR is
smaller in the center. However the quantity of users is greater
than in the suburban areas.

V. CONCLUSIONS

We have studied a uplink mobile association game. We
determined the location at which intelligent mobile terminals
prefer to connect to a given base station rather than to others.
Thanks to our proposed approach using optimal transport
theory for mobile association we are able to completely
characterize the mobile association and the cell formation
under different policies from the mobile terminals point of
view and as well as from the global system point of view.
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