How can Ignorant but Patient Cognitive Terminals Learn Their Strategy and Utility?

Abstract : This paper aims to contribute to bridge the gap between ex- isting theoretical results in distributed radio resource alloca- tion policies based on equilibria in games (assuming com- plete information and rational players) and practical design of signal processing algorithms for self-configuring wireless networks. For this purpose, the framework of learning theory in games is exploited. Here, a new learning algorithm based on mild information assumptions at the transmitters is pre- sented. This algorithm possesses attractive convergence prop- erties not available for standard reinforcement learning algo- rithms and in addition, it allows each transmitter to learn both its optimal strategy and the values of its expected utility for all its actions. A detailed convergence analysis is conducted. In particular, a framework for studying heterogeneous wire- less networks where transmitters do not learn at the same rate is provided. The proposed algorithm, which can be applied to any wireless network verifying the information assumptions stated, is applied to the case of multiple access channels in order to provide some numerical results.
Type de document :
Communication dans un congrès
SPAWC 2010, Jun 2010, Morocco. 5 p., 2010
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger
Contributeur : Samir Medina Perlaza <>
Soumis le : samedi 15 janvier 2011 - 15:53:17
Dernière modification le : jeudi 5 avril 2018 - 12:30:05
Document(s) archivé(s) le : samedi 16 avril 2011 - 02:56:42


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-00556154, version 1



Samir M. Perlaza, Hamidou Tembine, Samson Lasaulce. How can Ignorant but Patient Cognitive Terminals Learn Their Strategy and Utility?. SPAWC 2010, Jun 2010, Morocco. 5 p., 2010. 〈hal-00556154〉



Consultations de la notice


Téléchargements de fichiers