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ABSTRACT formation assumption. Note that learning theory is stithe-t

ry in the sense that the designed algorithms generallyneequ
large number of steps to converge and therefore needs to be
improved to be fruitfully implemented. One of our objectve

in this paper is precisely to propose and analyze a new learn-
ing algorithm which relies on mild information assumptions
from the standpoint of a wireless terminal designer.

In the available literature on wireless communications, th
sest work to the one reported here is [5]. The authors of
[5] proposed to apply the reinforcement learning algorithm
(RLA) initially introduced by [6] and revisited by [7] in or-
der to propose a distributed (always in the sense of the deci-

: : : o sion) power control policy for networks with finite numbers
its optimal strategy and the values of its expected utility f of transmitters and power levels. Based on the sole knowl-

all its actions. A detailed convergence analysis is coratlict ; o
In particular, a framework for studying heterogeneous Wirefedge of the value of its utility at each step, the correspond-

less networks where transmitters do not learn at the same raf 9 algorithm cor]sists, for gach_transmitter, in upda_\titsag i
is provided. The proposed algorithm, which can be applied %Erategy, namely its probability distribution over the gibte

any wireless network verifying the information assumpgion ower levels. The authors of [5] conduct the convergence

: : ; alysis for2—player2—action games. In the present pa-
iﬁtgrd t’olir%?/%fgc}r%éhr?u?:ﬁcgr rrg;ljtlltgle access channels Eﬂr we propose a new learning algorithm based on the idea

of Q—learning used in Markov decision processes [8] and the
Boltzmann-Gibbs learning algorithm [9]. The main reasons
1. INTRODUCTION for proposing this new algorithm, which is detailed in Sec.
3.1, are the following: (1) The proposed algorithm converge
Concepts such as cognitive radio, unlicensed bands, ad h#@ a class of games broader than the one of the RLA; (2) It
networks, and self-configuring networks are becoming moréllows a transmitter to learn its distributed strategy tisa és
and more important in the wireless communications arenaxpected utility function for all its actions. In addition this
One common point between the corresponding scenarios @gorithm, we provide several general convergence redults
that radio devices autonomously set up their transmission ¢ particular, we give a theoretical framework for analyzireg-n
figuration and interact with each other through mutual interworks comprising transmitters who learn at different rates
ference. Hence, game theory, a branch of mathematics ana-
lyzing interactions between (inter-dependent) decisi@k-m
ers, appears as a natural paradigm to analyze, optimize and
design these types of scenarios. This is one of the reasons wi . L ,
it is applied more and more intensively to wireless networks N€ Purpose of this section is twofold. The first two subsec-
(see e.g., [1] and references therein). For instance, miany d ions are dedicated to readers who are not familiar with game
tributed power control and resource allocation schemes hafh€ory and reinforcement learning. Next, we describe the as
been proposed by exploiting concepts of game theory sucimptions required for our algorithm to be applied to a given
as equilibria. Nonetheless, there is a quite general censeli'€less network. We do not provide a specific signal model
sus to say that the corresponding analysis are useful bt reft this point, since our algorithm can be applied to manysype
on strong information and behavior assumptions on the teRf Self-configuring wireless networks.
minals and thus, predicted game outcomes (most often Nash
equilibria) will be rarely observed. Fortunately, speedl 2 1. Review of basic game-theoretic concepts
sub-branches of game theory, such as algorithmic game the-
ory [2], learning theory in games [3], and mechanism desigi he three basic components of a game are the set of players
[4] have been developed before researchers and engineers €l = {1, ..., K}, K being the number of players), the action
counter this problem. One of the many purposes of learningpacesAly, ..., Ax), and the cost/payoff/reward/utility func-
theory is to design algorithms exploiting partial inforioat  tions (u1, ..., ux); in this paper only discrete action spaces
on the game to converge to solutions predicted under full inare considered and are denotedAy = {A; 1, ..., 4; 4,}

This paper aims to contribute to bridge the gap between e>§
isting theoretical results in distributed radio resouriteca-
tion policies based on equilibria in games (assuming com
plete information and rational players) and practical giesi
of signal processing algorithms for self-configuring wéaed
networks. For this purpose, the framework of learning thieor
in games is exploited. Here, a new learning algorithm basegIO
on mild information assumptions at the transmitters is pre
sented. This algorithm possesses attractive convergeope p
erties not available for standard reinforcement learnigg-a
rithms and in addition, it allows each transmitter to leaothb

2. PRELIMINARY PART



for playeri € XK. This paper covers scenarios where play-is not assumed for implementing the algorithm. This is one
ers are transmitters who are able to choose their actions mf the reasons why gradient-like techniques are not apggkca
themselves. The actions can be typically a power level, &ere.

vector of powers, the constellation size, or any other trans

mission parameter. The utility function can be, for example
the transmission rate (see e.g., [10]) or energy-effici¢eey

e.g., [11]). If the game is played only once, the game is dalle at this point, it is possible to delineate the framework déth

a static or one-shot game and can be representedfivale  paper. The results provided here apply to all wireless seena

in its strategic-form:§ = (X, {A;}icx, {ui}iex). When  jo5 meeting the following conditions:

player: € X chooses an action iA; according to a probabil- 4 The addressed wireless game musfibie i.e., both the

ity distribution number of transmitters and possible actions must be finite.
For example, this is a suited assumption if the action isrestra

T = (Ti1s e iy (1)  mit power level, a modulation constellation size, a numbfer o

transmit antennas to use, or a number of receive base ftation

overA,;, the choice ofr, is called a mixed strategy. When)  to be connected to. However the number of channel states

is on a vertex of the simple&(A;) the mixed strategy boils can be arbitrary (finite or infinite).

down to a pure strategy i.e., the deterministic choice of am Each transmitter must be able to observe thkie of its

action. In this paper we consider dynamic games i.e., playindividual utility obtained at each time A very practical ex-

ers play several times, and at each tineach playei € X  ample is the frame success rate. If the transmitter is acknow

chooses its action;(t) € A; following its probability dis- edged by the receiver frame by frame by an ACK/NACK (ac-

tribution =, (¢). Such a choice can be made every symbolknowledgment/non-acknowledgment) message, then the-tran

block of symbols, or frame duration. Additionally, the dy- mitter is therefore able to know the instantaneous valubef t

namic game is stochastic in the sense that the game can havember of successfully received frames.

a state which changes from time to time. Often, in wireles® The duration of the interaction between the transmitters

communications, the state will be typically the channdlesta must be sufficiently high in order to observe the convergence

e.g., the vector of channel gaingt) = (hy(t),...,hx(t)).  of the strategies (probability distributions, (¢), for all & €

This is why we will denote the instantaneous utility funatio X) and therefore achieve an equilibrium. The authors insist

by ul. Neither the overall channel stakenor the individual N the fact that one of the purposes of this paper is to pro-

channel staté; is known to transmittef € K. The channel Mote learning theory in the wireless community as an inter-

transition probability is also assumed to be unknown toyeverMediate theory to bridge the gap between equilibrium-based

transmitter. To conclude this section we would like to men{&-g., control or resource allocation) distributed petcand

tion that often, it is assumed that players are rational hati t Implementable signal processing algorithms and propode an

rationality is common knowledge. In this paper, each trans@nalyze a new algorithms bridging this gap.

mitter does the best for himself but does not need to know

whether the other transmitters are rational or not. 3 JOINT UTILITY STRATEGY ESTIMATION
BASED REINFORCEMENT LEARNING

2.3. Scope of the paper

2.2. Review of the reinforcement learning algorithm of [7]

. . . . ) 3.1. The algorithm
The utility function at a given time depends on the actions

played by the different players. By denoting(t) the ac- As mentioned in the previous section we considéf-player
tion played byi at timet, we can write the utility of player stochastic dynamic game with an arbitrary number of channel
i aSu?(t) (a1(t), ..., ax(t)). By notational abuse but for the states. The players are the transmitters and the utilitytfon

sake of clarity the utility function of at staget will be de-  is the average utility of transmitter that is, = 3/, u;(t).
noted byu;(t). For example, with our notations we have thatBased on the sole knowledge of the value.df), each trans-
mi1(t) = Prfa;(t) = A;1]. The RLA of [6, 7, 5] consists in  mitter updates its mixed strategy at stagel. As mentioned
updating the probability distribution over the possiblé@ts  in Sec. 2.2 the RLA of [6, 7, 5] does not converge in all (wire-
as follows:Vi € K, Vj € {1, ..., |A4l}, less) games. Our objective is to design an algorithm which
converges for a broader class of games and learns/estimates
i (t+1) = i () + N (£ (t) (ﬂai(t):Ai s j(t)) (2) notonly the strategies of the transmitter but also its etqubc
' N - utility for all its actions. Indeed, for existing RLA only ¢h

where1l is the indicator function an@ < );, < 1is the Strategy is learned (reinforced). Here, we propose to rein-
weight chosen by playerat stage; this parameter has to be force both strategy and utility, which is why we call the pro-
normalized and represents the learning rate. The algorith0S€d algorithm Joint Utility STrategy Estimation (JUSTE)
is simple to interpret: the action which was played at the?@sed RLA. First, we provide the new learning algorithm and
last stage, namely; (¢), sees its probability increased (since then we explain EOW |tbh%s_|lbeen built.  For eacke X,
(ﬂai(t):Ai,j — m.;(t)) > 0) while the other actions see their Jj € {1,...,]A:|} the probability transmittei assigns to ac-

tionj i dated ding to:
probability decreased (sin®e— 7; ;(t) < 0). The key point 'on j Is Updated according fo

here is that the increment in the probability of each action o _ Y o _ (e
depends on the corresponding observed utility and its learn Mg (t+1) [}”(t)/\z(t)]m“ (8) + A (t)ﬁzﬁu” ()
ing rate. More importantly, note that in (2), for each player uij(t+1) = 0 Lo, (h)=a,,, [wi; () — i ;(t)]
only the value of its individual utility function at stageis +u; ;(t)

required. Therefore, the knowledge of the utility function 3)



where); (t) andy;,(t) are respectively the learning rates of the3.2. Convergence analysis

strategy and utility of transmittére X attimet. u; ;(¢) isthe . . _
estimated utility of transmittere X for actionAi,l,-Jat timet. ~ Ensuringthe convergence in a sufficiently broad class okgam

3; is the Boltzmann-Gibbs (BG) distribution. The BG distri- in wireless communications and ensuring the latter to be rel

bution associated with a vector= (1, ..., z5/) is given by atively fast w.r.t. existing solutions are fundamentatiess

v Y ST h . As mentioned in Sec. 2, we consider the general case where
m € {L,... M}, B(zm) = Sen. g e WHErea IS & channel states are time-variant and thus, we focus on the con

parameterd represents the temperature in physics, rationalvergence of each individual utility vectay = (w1, ..., u; |4,))

ity levelin learning, etc). In our case we have that to Ej [yﬂ In the following, we provide several important

0@ 5 (1) results whose proofs are not provided because of the lack of

(4)  space but some key elements are given.

Zke{l,....mi‘} Uik (t)

Proposition 1 (Consequences of convergencéthe JUSTE
The proposed algorithm, which can be initialized, in an arbased RLA converges, then: I, ;o @, (t) = By [u]; (ii)

bitrary way is inspired fronmQ)—learning algorithms used in the limit strategy correspond to a BG equilibrium that is the
Markov decision processes to estimate a function [8] (her@nique solution of the fixed point equatiGn(E, w[uiﬁ-]) —

u; ;) and the BG learning used in games to learn strategies | ith - — ( %) e

only (which can be recovered by choosihg; — 1 and ig- “J =7 e K
noring the second equation). To implement the proposed
gorithm only the knowledge of the value of the individual-uti
ity associated with the played action, namelyt) at stage,

alrhis result can be proved by using results from the theory
of stochastic approximation and more precisely the develop

. ) . . ent of the ordinary differential equation (ODE) approazh t
is required. An important difference between JUSTE-baseEOChastiC approximation provided in [12, 13]. The mairaide

RLA and conventional RLA is that the values of;; for the s 4 rewrite the second equation of (3) in Robin-Monro iter-
actions not played at stagenamelyA; ; # a;(t), are nowes-  ative form (see [13]) and approximate it by an ODE. In this
timated. The corresponding estimates are used to reghite t aper, the two points we want to emphasize are the follow-
convergence process of the strategy. Indeed, these estimajng: the proposed estimation procedure is consistent ®@r th
allow the probability associated with a given action to be up jjities: every rest point of the ODE is an equilibrium hi
dated more frequently (not only when the associated acion iroperty is not verified by standard RLA which are approxi-

drawn). The choice consisting in couplidg—learning and mated by the replicator dynamics [14].
BG learning is quite subtle. Indeed, with BG learning, prob-

abilities never vanish and can therefore used at the denomfroposition 2 (Convergence to ODE)Let \;(t) = k;\(t)
nator in the second equation of (3). To conclude this sectioand ;(t) = ¢;u(t) verify (5). Then the JUSTE based RLA
we would like to add a comment on learning rates (t),  converges almost surely and the limit utility and stratsgiee
wi,j(t). As the algorithm updates probabilities, normalizedthe solutions of the following system of ODEs:

learning rates have to be chosen. Additionally, if one wants

to guarantee the algorithm to converge to a solution of a dif- dmi () 0B (i (1) — 7 s (4
ferential equation, the following conditions have to be foet aall () Z[Bz(u”ﬁ( ) Aﬁ”( ) (7
Ai g (1): —d— = lilBpglui;] —ui; ().
In particular, \;(¢) = p;(t) implies that:
S A1) = 400, SN2 (1) < oo, s P (1) = pua(t) imp
d71'7', i ~

£>0 >0 { dAd—;EZ — 51’(“@3’,@) — .4 (t) @

The same conditions are required far; (t). A simple exam- d = Enalu; ;] — i)

H 1 H 1
() = , 1 < 1. iy
pleis s ; () o With ¢ > O and; <7 <1 Proposition 3 (Slow and fast learners)Let \;(t) and p;(t)
Remﬁrk: We }(ste_thehBG 'nséeag of stfan%ar?} RLIA be-yerify (5). Additionally assume thai; () are equal toy(t)
cause when considering the standard RLA for both utility an%ndlimt_>+oo k?igt()t) — 0. Then the JUSTE based RLA con-

strategies, one gets o i :
verges almost surely and the limit strategies are the sohsti
of the following ODE:

Ti,j (t + 1) = il(t)u(%gt) []llli,(t):Ai,j — Tij (t)}
gt +1) = mﬁ’)]%a3<t>_m,j [ (t) — i (1) sl _ 5000 b (Bumlily]) (@
Ui, 5 t

) -~ ) (6) In particular for two-player case, one has the system
which leads to a composition of re-scaled replicator dynam-

ics. However, the replicator dynamics may not lead to equi- drmy j(t) h
libria (for example the faces of the simplex are forward in- u A ([32(1%,#1 [UT,J-])) (10)
variant). Using a smooth mapping like BG, we deviate the

trajectory to the relative interior of the simplex. Thusyan The proof is built on the arguments given in [15, 13]. We
rest point of our algorithm leads to-a—equilibrium which  see that for a sufficiently high number of stages, the optimal
gives an equilibrium when goes to infinity. strategy of a transmitter is the solution to an ODE based on




the composition of the functions;. The proposed approach
therefore gives a general framework for analyzing heteroge

neous wireless networks where transmitters do not leaheat t 10 e of Actual T (1 Zj) o)
same rate. In the case where there exists a hierarchy in terr e e
of learning rate between the transmitters, as defined in th 5
above proposition, a very elegant solution can be obtained. o : : : : :

0 100 200 300 400 500 600

Proposition 4 (Sufficient conditions for conv. to equilibria) Observation fterval (1

If one of the following conditions is satisfied then the JUSTE Yremes el TSRS EEREERL AR T
based RLA converges: 08 S T e I
(i) the game is a dominance solvable game; 06 e of fctual U (1)

A . . v ge of Estimated Utility (7o (t))

(ii) the game is potential; 04

(iii) the game is a two-transmitter zero-sum game; ‘ ‘ ‘ ‘ ‘

(iv) the transmitters have only two actions and the netwsrk i % 100 200 300 400 500 600

Observation Interval (t)

composed of two types of learners (slow and fast ones);
(v) any finite game with unique evolutionarily stable stggte
Fig. 1. Estimated and actual values of the average individual

The class of games (i) corresponds to games where the itilities as a function of time (measured in utility obsdiwa
erated dominance procedure leads to a unique prediction @ftervals), whenk = S = 2, average signal to noise ratio
the game outcome: the main idea is that dominated strategig&R, = Zimax — 1( dB.
(a strategy is dominated for a given transmitter if therenis a 7
other one that is better whatever the other transmittersaio)
be removed. The power allocation game of [10] for multiple . )
input multiple output channels is an example of this type offetworks), each one operating in a dedicated frequency band
games (but not finite). Class (ii): recall that a game define@nd connected to the same network (through a radio network
by (%, (Ai);eq » (:)iex) is an exact potential game if there controller). Forall(i, s) € X x 8, denote by; () the chan-

. . . nel gain for transmittei over receiver at instant. Let also
exists a functionp such thatvi € X, Va € Ay x ... Ak, o _ be the t it t

! ! _ ! - - 3 9 vy M,
Va, € Ai, ui(a) — wlaa_) = 6(a) — ofal,a_). The () = (Pirll) - pis(t)) be the ransmit power vector
power control game of [16] and the wireless routing game off Playeri. Here,p; (¢) > 0 represents the transmit power
[17] are examples of potential games. Classes (iii) and (ivpf playeri over channek at instantt and > s pi s(t) <
do not call for particular comments. Class (v) correspondg; max. Based on the discussion in [17], players are restricted
to games with unique equilibrium which is resilient to smallto transmit at full power over a unique channel aiming to
perturbation. maximize its own transmission rate (utility functiom)(t) =

his|*pis _

Proposition 5 (Convergence time)The convergence time of 2-scs 108 (1 + U§+Ek‘g«\{‘i} Tk <Prs ) swhereh = (h;...hg)
the ODE of the strategy and utility for JUSTE based RLA taandh; = (h;1...hi,s). We write the strategy set of player
be e—close to the solutions are respectively given by: i€ Kas,Ai = {Pmaxes:Vs€S, e, = (esn) and

0) 6(10g(€l2)); (i) @(log(%)). Vr e 8\ s,es,=0,andes s =1}.

In[17], it has been shown that the gaghe- (K, {A;}icxc,
{u;}icxc) Is an exact potential game with multiple NE. Thus,
the JUSTE-based RLA converges to one of the NE (Prop. 4).
dn the following, assume that all transmittere X play the

nes

This proposition quantifies the intuition that probabitiigtri-
butions (strategies) need more time than utilities to benkeg
Interestingly, the fact that JUSTE based RLA learn bothatra
ies and utilities does not slow down the convergence psoce . .
gv.r.t. standard RLA, since (i) correspond to thegconverzx@en game by using our JUSTE-based RLA to update their proba-
time of the latter. To conclude this section let us mention ity distributionsz (¢).
simple example in which the proposed algorithm outperform _For the sake of simplicity, we present some convergence
existing ones. results considering onlys = 2 transmitters (players) and
Example. Consider the power control game wiitransmit- 5 = 2 receivers. InFig. 1, the estimated and actual individual

ters and3 possible power levels, one can show that by slightly2verage utilities are plotted for both transmitters. Threnier
modifying the utility asu;(ai, ...,ax) = LisiNgy(@)>p} + 1S calculated based on the estimation of the utility of each

: layeri € X and the corresponding probability distribution
Wa; <masx;ssi 0y = Wming ; SINRy (a) <90}, thE gAME IS not gi(%/). The latter is the meapn of al?t?]e utility )é)bservations
potential anymore and conventional learning algorithnthisu qi,ring the whole transmission duration. In Fig. 1, we observ
as standard RLA, replicator dynamics, log-linear dynamicsy,q,y the estimated average of the individual utilities (angs
logit dynamics, best-response dynamics, and fictitioug plage sirategies of all players) converge to the actual aeerag
fail to converge while the JUSTE based RLA convergass  jngividual utilities. One can say that convergence is reddy
atarget SINRg; represents the transmit poweriof quick considering that each player only possesses infiomat
on its own strategy set and sporadic numerical observatibns

4. EXAMPLE: THE PARALLEL MULTIPLE ACCESS its utility.
CHANNELS In order to give an idea of the convergence time, we adopt
the following assumption: once the error between the esti-
Consider a seX = {1,..., K} of transmitters sending in- mated and actual individual average utilities of all playisr
dependent signals to a set= {1, ..., S} of receivers (e.g., smaller than5%, then it can be said that the network con-

access-points in Wi-Fi networks or base stations in cellulaverged to an equilibrium configuratior-équilibrium). In



10000

Number of Observation Intervals

2 3 4 5 6 7 8 9 10
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Fig. 2. Convergence time (measured in utility observation
intervals) as a function of the number of transmitters in the

network K = {2,...,10} whenS = 3 and average signal to
noise raticSNR,; = 252 — 10dB.

Fig. 2, we plot the convergence time as a function of the

number of transmitter&” € {2,...,10}, when the number
of receivers is kept constaSt= 3. Therein, it can be shown

that for weakly loaded networks} < 1, the convergence

time is larger. This is due to the fact that for weakly loaded10]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

networks transmitters are tempted to constantly change the

receiver since there always exist a receiver with congtantl

time-varying unused channels.

5. CONCLUSION

As a standard RLA, the proposed learning algorithm (JUSTE
based RLASs) only requires the knowledge of the value of th¢12]

individual obtained utility associated with the latestiact

without assuming rationality is common knowledge. The pro-
posed algorithm is shown to have attractive convergenge pro
erties and to be suited to analyze complex scenarios such

(11]

B3

those where transmitters do not learn at the same rate. A sim-

ple example was provided to show that conventional learning
algorithms fail to converge in scenarios where JUSTE base
RLAs do. The proposed framework seems to be very fruitfu

for designing implementable distributed control and aloc

tion algorithms. One important technical challenge remain

o

to accelerate the convergence rate of learning algoritnds a [15]

design algorithms offering desired trade-offs betweenno

edge at the transmitters and convergence rate. In a general
manner, game theory and learning theory in games seem to
open a large avenue for technical innovation in terms of disf16]

tributed control and radio resource allocation.
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