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ABSTRACT

This paper aims to contribute to bridge the gap between ex-
isting theoretical results in distributed radio resource alloca-
tion policies based on equilibria in games (assuming com-
plete information and rational players) and practical design
of signal processing algorithms for self-configuring wireless
networks. For this purpose, the framework of learning theory
in games is exploited. Here, a new learning algorithm based
on mild information assumptions at the transmitters is pre-
sented. This algorithm possesses attractive convergence prop-
erties not available for standard reinforcement learning algo-
rithms and in addition, it allows each transmitter to learn both
its optimal strategy and the values of its expected utility for
all its actions. A detailed convergence analysis is conducted.
In particular, a framework for studying heterogeneous wire-
less networks where transmitters do not learn at the same rate
is provided. The proposed algorithm, which can be applied to
any wireless network verifying the information assumptions
stated, is applied to the case of multiple access channels in
order to provide some numerical results.

1. INTRODUCTION

Concepts such as cognitive radio, unlicensed bands, ad hoc
networks, and self-configuring networks are becoming more
and more important in the wireless communications arena.
One common point between the corresponding scenarios is
that radio devices autonomously set up their transmission con-
figuration and interact with each other through mutual inter-
ference. Hence, game theory, a branch of mathematics ana-
lyzing interactions between (inter-dependent) decision mak-
ers, appears as a natural paradigm to analyze, optimize and
design these types of scenarios. This is one of the reasons why
it is applied more and more intensively to wireless networks
(see e.g., [1] and references therein). For instance, many dis-
tributed power control and resource allocation schemes have
been proposed by exploiting concepts of game theory such
as equilibria. Nonetheless, there is a quite general consen-
sus to say that the corresponding analysis are useful but rely
on strong information and behavior assumptions on the ter-
minals and thus, predicted game outcomes (most often Nash
equilibria) will be rarely observed. Fortunately, specialized
sub-branches of game theory, such as algorithmic game the-
ory [2], learning theory in games [3], and mechanism design
[4] have been developed before researchers and engineers en-
counter this problem. One of the many purposes of learning
theory is to design algorithms exploiting partial information
on the game to converge to solutions predicted under full in-

formation assumption. Note that learning theory is still a the-
ory in the sense that the designed algorithms generally require
a large number of steps to converge and therefore needs to be
improved to be fruitfully implemented. One of our objectives
in this paper is precisely to propose and analyze a new learn-
ing algorithm which relies on mild information assumptions
from the standpoint of a wireless terminal designer.

In the available literature on wireless communications, the
closest work to the one reported here is [5]. The authors of
[5] proposed to apply the reinforcement learning algorithm
(RLA) initially introduced by [6] and revisited by [7] in or-
der to propose a distributed (always in the sense of the deci-
sion) power control policy for networks with finite numbers
of transmitters and power levels. Based on the sole knowl-
edge of the value of its utility at each step, the correspond-
ing algorithm consists, for each transmitter, in updating its
strategy, namely its probability distribution over the possible
power levels. The authors of [5] conduct the convergence
analysis for2−player2−action games. In the present pa-
per we propose a new learning algorithm based on the idea
of Q−learning used in Markov decision processes [8] and the
Boltzmann-Gibbs learning algorithm [9]. The main reasons
for proposing this new algorithm, which is detailed in Sec.
3.1, are the following: (1) The proposed algorithm converges
for a class of games broader than the one of the RLA; (2) It
allows a transmitter to learn its distributed strategy but also its
expected utility function for all its actions. In addition to this
algorithm, we provide several general convergence results. In
particular, we give a theoretical framework for analyzing net-
works comprising transmitters who learn at different rates.

2. PRELIMINARY PART

The purpose of this section is twofold. The first two subsec-
tions are dedicated to readers who are not familiar with game
theory and reinforcement learning. Next, we describe the as-
sumptions required for our algorithm to be applied to a given
wireless network. We do not provide a specific signal model
at this point, since our algorithm can be applied to many types
of self-configuring wireless networks.

2.1. Review of basic game-theoretic concepts

The three basic components of a game are the set of players
(K = {1, ...,K}, K being the number of players), the action
spaces (A1, ...,AK), and the cost/payoff/reward/utility func-
tions (u1, ..., uK); in this paper only discrete action spaces
are considered and are denoted byAi = {Ai,1, ..., Ai,|Ai|}



for player i ∈ K. This paper covers scenarios where play-
ers are transmitters who are able to choose their actions by
themselves. The actions can be typically a power level, a
vector of powers, the constellation size, or any other trans-
mission parameter. The utility function can be, for example,
the transmission rate (see e.g., [10]) or energy-efficiency(see
e.g., [11]). If the game is played only once, the game is called
a static or one-shot game and can be represented by a3-tuple
in its strategic-form:G = (K, {Ai}i∈K , {ui}i∈K). When
playeri ∈ K chooses an action inAi according to a probabil-
ity distribution

πi =
(
πi,1, ..., πi,|Ai|

)
(1)

overAi, the choice ofπi is called a mixed strategy. Whenπi
is on a vertex of the simplex∆(Ai) the mixed strategy boils
down to a pure strategy i.e., the deterministic choice of an
action. In this paper we consider dynamic games i.e., play-
ers play several times, and at each timet each playeri ∈ K
chooses its actionai(t) ∈ Ai following its probability dis-
tribution πi(t). Such a choice can be made every symbol,
block of symbols, or frame duration. Additionally, the dy-
namic game is stochastic in the sense that the game can have
a state which changes from time to time. Often, in wireless
communications, the state will be typically the channel state
e.g., the vector of channel gainsh(t) = (h1(t), ..., hK(t)).
This is why we will denote the instantaneous utility function
by u

h
i . Neither the overall channel stateh nor the individual

channel statehi is known to transmitteri ∈ K. The channel
transition probability is also assumed to be unknown to every
transmitter. To conclude this section we would like to men-
tion that often, it is assumed that players are rational and that
rationality is common knowledge. In this paper, each trans-
mitter does the best for himself but does not need to know
whether the other transmitters are rational or not.

2.2. Review of the reinforcement learning algorithm of [7]

The utility function at a given timet depends on the actions
played by the different players. By denotingai(t) the ac-
tion played byi at timet, we can write the utility of player
i asuh(t)

i (a1(t), ..., aK(t)). By notational abuse but for the
sake of clarity the utility function ofi at staget will be de-
noted byui(t). For example, with our notations we have that
πi,1(t) = Pr[ai(t) = Ai,1]. The RLA of [6, 7, 5] consists in
updating the probability distribution over the possible actions
as follows:∀i ∈ K, ∀j ∈ {1, ..., |Ai|},

πi,j(t+1) = πi,j(t)+λi(t)ui(t)
(
1lai(t)=Ai,j

− πi,j(t)
)

(2)

where1l is the indicator function and0 < λi,t < 1 is the
weight chosen by playeri at staget; this parameter has to be
normalized and represents the learning rate. The algorithm
is simple to interpret: the action which was played at the
last stage, namelyai(t), sees its probability increased (since(
1lai(t)=Ai,j

− πi,j(t)
)
≥ 0) while the other actions see their

probability decreased (since0 − πi,j(t) ≤ 0). The key point
here is that the increment in the probability of each actionAi,j

depends on the corresponding observed utility and its learn-
ing rate. More importantly, note that in (2), for each player,
only the value of its individual utility function at staget is
required. Therefore, the knowledge of the utility functionui

is not assumed for implementing the algorithm. This is one
of the reasons why gradient-like techniques are not applicable
here.

2.3. Scope of the paper

At this point, it is possible to delineate the framework of this
paper. The results provided here apply to all wireless scenar-
ios meeting the following conditions:
• The addressed wireless game must befinite i.e., both the
number of transmitters and possible actions must be finite.
For example, this is a suited assumption if the action is a trans-
mit power level, a modulation constellation size, a number of
transmit antennas to use, or a number of receive base stations
to be connected to. However the number of channel statesh
can be arbitrary (finite or infinite).
• Each transmitter must be able to observe thevalue of its
individual utility obtained at each timet. A very practical ex-
ample is the frame success rate. If the transmitter is acknowl-
edged by the receiver frame by frame by an ACK/NACK (ac-
knowledgment / non-acknowledgment)message, then the trans-
mitter is therefore able to know the instantaneous value of the
number of successfully received frames.
• The duration of the interaction between the transmitters
must be sufficiently high in order to observe the convergence
of the strategies (probability distributionsπk (t), for all k ∈
K) and therefore achieve an equilibrium. The authors insist
on the fact that one of the purposes of this paper is to pro-
mote learning theory in the wireless community as an inter-
mediate theory to bridge the gap between equilibrium-based
(e.g., control or resource allocation) distributed policies and
implementable signal processing algorithms and propose and
analyze a new algorithms bridging this gap.

3. JOINT UTILITY STRATEGY ESTIMATION
BASED REINFORCEMENT LEARNING

3.1. The algorithm

As mentioned in the previous section we consider aK-player
stochastic dynamic game with an arbitrary number of channel
states. The players are the transmitters and the utility function
is the average utility of transmitteri, that is, 1

T

∑T
t=1 ui(t).

Based on the sole knowledge of the value ofui(t), each trans-
mitter updates its mixed strategy at staget+1. As mentioned
in Sec. 2.2 the RLA of [6, 7, 5] does not converge in all (wire-
less) games. Our objective is to design an algorithm which
converges for a broader class of games and learns/estimates
not only the strategies of the transmitter but also its expected
utility for all its actions. Indeed, for existing RLA only the
strategy is learned (reinforced). Here, we propose to rein-
force both strategy and utility, which is why we call the pro-
posed algorithm Joint Utility STrategy Estimation (JUSTE)
based RLA. First, we provide the new learning algorithm and
then we explain how it has been built. For eachi ∈ K,
j ∈ {1, ..., |Ai|} the probability transmitteri assigns to ac-
tion j is updated according to:





πi,j(t+ 1) = [1− λi(t)]πi,j(t) + λi(t)βi (ûi,j(t))

ûi,j(t+ 1) = µi(t)
πi,j(t)

1lai(t)=Ai,j
[ui,j(t)− ûi,j(t)]

+ûi,j(t)
(3)



whereλi(t) andµi(t) are respectively the learning rates of the
strategy and utility of transmitteri ∈ K at timet. ûi,j(t) is the
estimated utility of transmitteri ∈ K for actionAi,j at timet.
βi is the Boltzmann-Gibbs (BG) distribution. The BG distri-
bution associated with a vectorx = (x1, ..., xM ) is given by
∀m ∈ {1, ...,M}, β(xm) = eαxm∑

n∈{1,...,M} eαxn
whereα is a

parameter (α represents the temperature in physics, rational-
ity level in learning, etc). In our case we have that

βi(ûi,j(t)) =
eαûi,j(t)

∑
k∈{1,...,|Ai|}

eαûi,k(t)
. (4)

The proposed algorithm, which can be initialized, in an ar-
bitrary way is inspired fromQ−learning algorithms used in
Markov decision processes to estimate a function [8] (here
ui,j) and the BG learning used in games to learn strategies
only (which can be recovered by choosingλi,j → 1 and ig-
noring the second equation). To implement the proposed al-
gorithm only the knowledge of the value of the individual util-
ity associated with the played action, namelyai(t) at staget,
is required. An important difference between JUSTE-based
RLA and conventional RLA is that the values ofui,j for the
actions not played at staget, namelyAi,j 6= ai(t), are now es-
timated. The corresponding estimates are used to regulate the
convergence process of the strategy. Indeed, these estimates
allow the probability associated with a given action to be up-
dated more frequently (not only when the associated action is
drawn). The choice consisting in couplingQ−learning and
BG learning is quite subtle. Indeed, with BG learning, prob-
abilities never vanish and can therefore used at the denomi-
nator in the second equation of (3). To conclude this section
we would like to add a comment on learning ratesλi,j(t),
µi,j(t). As the algorithm updates probabilities, normalized
learning rates have to be chosen. Additionally, if one wants
to guarantee the algorithm to converge to a solution of a dif-
ferential equation, the following conditions have to be metfor
λi,j(t):

∑

t≥0

λi,j(t) = +∞,
∑

t≥0

λ2
i,j(t) < +∞. (5)

The same conditions are required forµi,j(t). A simple exam-
ple isλi,j(t) =

1
(t+c)γi with c > 0 and 1

2 < γi ≤ 1.

Remark: We use the BG instead of standard RLA be-
cause when considering the standard RLA for both utility and
strategies, one gets





πi,j(t+ 1) = λi(t)ui(t)
[
1lai(t)=Ai,j

− πi,j(t)
]

+πi,j(t)
ûi,j(t+ 1) = µi(t)1lai(t)=Ai,j

[ui(t)− ûi,j(t)]
+ûi,j(t)

(6)
which leads to a composition of re-scaled replicator dynam-
ics. However, the replicator dynamics may not lead to equi-
libria (for example the faces of the simplex are forward in-
variant). Using a smooth mapping like BG, we deviate the
trajectory to the relative interior of the simplex. Thus, any
rest point of our algorithm leads to a1

α
−equilibrium which

gives an equilibrium whenα goes to infinity.

3.2. Convergence analysis

Ensuring the convergence in a sufficiently broad class of games
in wireless communications and ensuring the latter to be rel-
atively fast w.r.t. existing solutions are fundamental issues.
As mentioned in Sec. 2, we consider the general case where
channel states are time-variant and thus, we focus on the con-
vergence of each individual utility vectorui = (ui,1, ..., ui,|Ai|)

to Eh

[
u
h
i

]
. In the following, we provide several important

results whose proofs are not provided because of the lack of
space but some key elements are given.

Proposition 1 (Consequences of convergence)If the JUSTE
based RLA converges, then: (i)limt→+∞ ûi(t) = Eh[u

h
i ]; (ii)

the limit strategy correspond to a BG equilibrium that is the
unique solution of the fixed point equationβi(Eh,π[u

h
i,j ]) =

πi,j with π = (π1, ..., πK).

This result can be proved by using results from the theory
of stochastic approximation and more precisely the develop-
ment of the ordinary differential equation (ODE) approach to
stochastic approximation provided in [12, 13]. The main idea
is to rewrite the second equation of (3) in Robin-Monro iter-
ative form (see [13]) and approximate it by an ODE. In this
paper, the two points we want to emphasize are the follow-
ing: the proposed estimation procedure is consistent for the
utilities; every rest point of the ODE is an equilibrium (this
property is not verified by standard RLA which are approxi-
mated by the replicator dynamics [14].

Proposition 2 (Convergence to ODE)Let λi(t) = kiλ(t)
andµi(t) = ℓiµ(t) verify (5). Then the JUSTE based RLA
converges almost surely and the limit utility and strategies are
the solutions of the following system of ODEs:

{
dπi,j(t)

dt = ki[βi(ûi,j(t)) − πi,j(t)]
dûi,j(t)

dt = ℓi[Eh,π[u
h
i,j ]− ûi,j(t)].

(7)

In particular,λi(t) = µi(t) implies that:
{

dπi,j(t)
dt = βi(ûi,j(t))− πi,j(t)

dûi,j(t)
dt = Eh,π[u

h
i,j ]− ûi,j(t).

(8)

Proposition 3 (Slow and fast learners)Let λi(t) andµi(t)
verify (5). Additionally assume thatµi(t) are equal toµ(t)
andlimt→+∞

λi(t)
λi+1(t)

= 0. Then the JUSTE based RLA con-
verges almost surely and the limit strategies are the solutions
of the following ODE:

dπ1,j(t)

dt
= β1 ◦ β2 ◦ . . . ◦ βK

(
Eh,π1

[u
h
1,j ]

)
(9)

In particular for two-player case, one has the system

dπ1,j(t)

dt
= β1

(
β2(Eh,π1

[u
h
1,j])

)
(10)

The proof is built on the arguments given in [15, 13]. We
see that for a sufficiently high number of stages, the optimal
strategy of a transmitter is the solution to an ODE based on



the composition of the functionsβi. The proposed approach
therefore gives a general framework for analyzing heteroge-
neous wireless networks where transmitters do not learn at the
same rate. In the case where there exists a hierarchy in terms
of learning rate between the transmitters, as defined in the
above proposition, a very elegant solution can be obtained.

Proposition 4 (Sufficient conditions for conv. to equilibria)
If one of the following conditions is satisfied then the JUSTE
based RLA converges:
(i) the game is a dominance solvable game;
(ii) the game is potential;
(iii) the game is a two-transmitter zero-sum game;
(iv) the transmitters have only two actions and the network is
composed of two types of learners (slow and fast ones);
(v) any finite game with unique evolutionarily stable strategy.

The class of games (i) corresponds to games where the it-
erated dominance procedure leads to a unique prediction of
the game outcome: the main idea is that dominated strategies
(a strategy is dominated for a given transmitter if there is an-
other one that is better whatever the other transmitters do)can
be removed. The power allocation game of [10] for multiple
input multiple output channels is an example of this type of
games (but not finite). Class (ii): recall that a game defined
by

(
K, (Ai)i∈K

, (ui)i∈K

)
is an exact potential game if there

exists a functionφ such that∀i ∈ K, ∀a ∈ A1 × ...AK ,
∀a′i ∈ Ai, ui(a) − ui(a

′
i, a−i) = φ(a) − φ(a′i, a−i). The

power control game of [16] and the wireless routing game of
[17] are examples of potential games. Classes (iii) and (iv)
do not call for particular comments. Class (v) corresponds
to games with unique equilibrium which is resilient to small
perturbation.

Proposition 5 (Convergence time)The convergence time of
the ODE of the strategy and utility for JUSTE based RLA to
beǫ−close to the solutions are respectively given by:
(i) Θ(log( 1

ǫ2
)); (ii) Θ(log(1

ǫ
)).

This proposition quantifies the intuition that probabilitydistri-
butions (strategies) need more time than utilities to be learned.
Interestingly, the fact that JUSTE based RLA learn both strate-
gies and utilities does not slow down the convergence process
w.r.t. standard RLA, since (ii) correspond to the convergence
time of the latter. To conclude this section let us mention a
simple example in which the proposed algorithm outperform
existing ones.
Example. Consider the power control game with2 transmit-
ters and3 possible power levels, one can show that by slightly
modifying the utility asui(a1, ..., aK) = 1l{SINRi(a)>γ0} +
1l{ai<maxi′ 6=i ai′}

− 1l{mini′ 6=i SINRi′ (a)<γ0}, the game is not
potential anymore and conventional learning algorithms such
as standard RLA, replicator dynamics, log-linear dynamics,
logit dynamics, best-response dynamics, and fictitious play
fail to converge while the JUSTE based RLA converges;γ0 is
a target SINR,ai represents the transmit power ofi.

4. EXAMPLE: THE PARALLEL MULTIPLE ACCESS
CHANNELS

Consider a setK = {1, . . . ,K} of transmitters sending in-
dependent signals to a setS = {1, . . . , S} of receivers (e.g.,
access-points in Wi-Fi networks or base stations in cellular
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Fig. 1. Estimated and actual values of the average individual
utilities as a function of time (measured in utility observation
intervals), whenK = S = 2, average signal to noise ratio
SNRi =

pi,max

σ2 = 10 dB.

networks), each one operating in a dedicated frequency band
and connected to the same network (through a radio network
controller). For all(i, s) ∈ K×S, denote byhi,s(t) the chan-
nel gain for transmitteri over receivers at instantt. Let also
p
i
(t) = (pi,1(t), . . . , pi,S(t)) be the transmit power vector

of playeri. Here,pi,s(t) > 0 represents the transmit power
of player i over channels at instantt and

∑
s∈S

pi,s(t) 6

pi,max. Based on the discussion in [17], players are restricted
to transmit at full power over a unique channel aiming to
maximize its own transmission rate (utility function)ui(t) =∑

s∈S
log

(
1 +

|hi,s|
2pi,s

σ2
s+

∑
k∈K\{i} |hk,s|2pk,s

)
, whereh = (h1...hK)

andhi = (hi,1...hi,S). We write the strategy set of player
i ∈ K as,Ai = {pmax es : ∀s ∈ S , es = (es,n)n∈S

and
∀r ∈ S \ s, es,r = 0, andes,s = 1}.

In [17], it has been shown that the gameG = (K, {Ai}i∈K,
{ui}i∈K) is an exact potential game with multiple NE. Thus,
the JUSTE-based RLA converges to one of the NE (Prop. 4).
In the following, assume that all transmittersi ∈ K play the
game by using our JUSTE-based RLA to update their proba-
bility distributionsπi(t).

For the sake of simplicity, we present some convergence
results considering onlyK = 2 transmitters (players) and
S = 2 receivers. In Fig. 1, the estimated and actual individual
average utilities are plotted for both transmitters. The former
is calculated based on the estimation of the utility of each
playeri ∈ K and the corresponding probability distribution
πi(t). The latter is the mean of all the utility observations
during the whole transmission duration. In Fig. 1, we observe
how the estimated average of the individual utilities (and thus,
the strategies of all players) converge to the actual average
individual utilities. One can say that convergence is relatively
quick considering that each player only possesses information
on its own strategy set and sporadic numerical observationsof
its utility.

In order to give an idea of the convergence time, we adopt
the following assumption: once the error between the esti-
mated and actual individual average utilities of all players is
smaller than5%, then it can be said that the network con-
verged to an equilibrium configuration (ǫ-equilibrium). In
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Fig. 2, we plot the convergence time as a function of the
number of transmittersK ∈ {2, . . . , 10}, when the number
of receivers is kept constantS = 3. Therein, it can be shown
that for weakly loaded networks,K

S
< 1, the convergence

time is larger. This is due to the fact that for weakly loaded
networks transmitters are tempted to constantly change the
receiver since there always exist a receiver with constantly
time-varying unused channels.

5. CONCLUSION

As a standard RLA, the proposed learning algorithm (JUSTE
based RLAs) only requires the knowledge of the value of the
individual obtained utility associated with the latest action,
without assuming rationality is common knowledge. The pro-
posed algorithm is shown to have attractive convergenceprop-
erties and to be suited to analyze complex scenarios such as
those where transmitters do not learn at the same rate. A sim-
ple example was provided to show that conventional learning
algorithms fail to converge in scenarios where JUSTE based
RLAs do. The proposed framework seems to be very fruitful
for designing implementable distributed control and alloca-
tion algorithms. One important technical challenge remains
to accelerate the convergence rate of learning algorithms and
design algorithms offering desired trade-offs between knowl-
edge at the transmitters and convergence rate. In a general
manner, game theory and learning theory in games seem to
open a large avenue for technical innovation in terms of dis-
tributed control and radio resource allocation.
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