A. Törn and A. Zilinskas, Global Optimization, 1989.
DOI : 10.1007/3-540-50871-6

J. D. Pintér, Global Optimization in Action???Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications, Journal of the Operational Research Society, vol.48, issue.4, 1996.
DOI : 10.1057/palgrave.jors.2600358

A. Zhigljavsky and A. Zilinskas, Stochastic Global Optimization, 2007.
DOI : 10.1007/978-3-642-04898-2_570

A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to derivative-free optimization, SIAM, 2009.
DOI : 10.1137/1.9780898718768

Y. Tenne and C. K. Goh, Computational intelligence in optimization: applications and implementations, 2010.
DOI : 10.1007/978-3-642-12775-5

J. Mockus, V. Tiesis, and A. Zilinskas, The application of Bayesian methods for seeking the extremum, Towards Global Optimization, pp.117-129, 1978.

J. Mockus, Bayesian approach to Global Optimization: Theory and Applications, 1989.

B. Betrò, Bayesian Methods in Global Optimization, Journal of Global Optimization, vol.1, pp.1-14, 1991.
DOI : 10.1007/978-3-642-48417-9_6

M. Locatelli and F. Schoen, An adaptive stochastic global optimization algorithm for one-dimensional functions, Annals of Operations Research, vol.2, issue.4, pp.261-278, 1995.
DOI : 10.1007/BF02096402

A. Auger and O. Teytaud, Continuous Lunches Are Free Plus the Design of??Optimal Optimization Algorithms, Algorithmica, vol.1, issue.1, pp.121-146, 2008.
DOI : 10.1007/s00453-008-9244-5

URL : https://hal.archives-ouvertes.fr/inria-00369788

D. Ginsbourger and R. Le-riche, Towards Gaussian Process-based Optimization with Finite Time Horizon, mODa 9 Advances in Model-Oriented Design and Analysis, Contribution to Statistics, pp.89-96, 2010.
DOI : 10.1007/978-3-7908-2410-0_12

URL : https://hal.archives-ouvertes.fr/emse-00680794

S. Grünewälder, J. Audibert, M. Opper, and J. Shawe-taylor, Regret bounds for Gaussian process bandit problems, Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, pp.273-280, 2010.

D. P. Bertsekas, Dynamic programming and optimal control, 1995.

D. R. Jones, M. Schonlau, and W. J. Welch, Efficient global optimization of expensive black-box functions, Journal of Global Optimization, vol.13, issue.4, pp.455-492, 1998.
DOI : 10.1023/A:1008306431147

M. Locatelli, Bayesian algorithms for one-dimensional global optimization, Journal of Global Optimization, vol.10, issue.1, pp.57-76, 1997.
DOI : 10.1023/A:1008294716304

M. A. Osborne, Bayesian Gaussian Processes for Sequential Prediction Optimisation and Quadrature, 2010.

M. A. Osborne, R. Garnett, and S. J. Roberts, Gaussian processes for global optimization, 3rd International Conference on Learning and Intelligent Optimization (LION3), online proceedings, 2009.

M. A. Osborne, S. J. Roberts, A. Rogers, S. D. Ramchurn, and N. R. Jennings, Towards Real-Time Information Processing of Sensor Network Data Using Computationally Efficient Multi-output Gaussian Processes, 2008 International Conference on Information Processing in Sensor Networks (ipsn 2008), pp.109-120, 2008.
DOI : 10.1109/IPSN.2008.25

B. Williams, T. Santner, and W. Notz, Sequential Design of Computer Experiments to Minimize Integrated Response Functions, Statistica Sinica, vol.10, issue.4, pp.1133-1152, 2000.

M. Schonlau, Computer experiments and global optimization, 1997.

M. Schonlau and W. J. Welch, Global optimization with nonparametric function fitting, Proceedings of the ASA, Section on Physical and Engineering Sciences, pp.183-186, 1996.

M. Schonlau, W. J. Welch, and D. R. Jones, A data analytic approach to Bayesian global optimization, Proceedings of the ASA, Section on Physical and Engineering Sciences, pp.186-191, 1997.

A. I. Forrester and A. J. Keane, Recent advances in surrogate-based optimization, Progress in Aerospace Sciences, pp.50-79, 2009.
DOI : 10.1016/j.paerosci.2008.11.001

D. R. Jones, A taxonomy of global optimization methods based on response surfaces, Journal of Global Optimization, vol.21, issue.4, pp.345-383, 2001.
DOI : 10.1023/A:1012771025575

C. P. Robert and G. Casella, Monte Carlo statistical methods, 2004.

P. , D. Moral, A. Doucet, and A. Jasra, Sequential Monte Carlo samplers, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.68, issue.3, pp.411-436, 2006.

J. S. Liu, Monte Carlo strategies in scientific computing, 2008.
DOI : 10.1007/978-0-387-76371-2

A. O. Hagan, Bayes???Hermite quadrature, Journal of Statistical Planning and Inference, vol.29, issue.3, pp.245-260, 1991.
DOI : 10.1016/0378-3758(91)90002-V

A. O. Hagan, Curve Fitting and Optimal Design for Prediction, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.40, issue.1, pp.1-42, 1978.

M. S. Handcock and M. L. Stein, A Bayesian Analysis of Kriging, Technometrics, vol.21, issue.3, pp.403-410, 1993.
DOI : 10.1080/00401706.1993.10485354

D. Ginsbourger, C. Helbert, and L. Carraro, Discrete mixtures of kernels for Kriging-based optimization, Quality and Reliability Engineering International, vol.1, issue.2, pp.681-691, 2008.
DOI : 10.1002/qre.945

URL : https://hal.archives-ouvertes.fr/hal-00409900

A. O. Hagan, Some Bayesian numerical analysis, Bayesian statistics 4: proceedings of the Fourth Valencia International Meeting, 1991.