P. Baraldi, E. Zio, G. Gola, D. Roverso, and M. Hoffmann, Genetic algorithms for signal grouping in sensor validation: a comparison of the filter and wrapper approaches, Proc. IMechE, pp.189-206, 2008.
DOI : 10.1243/1748006XJRR137

P. Baraldi, E. Zio, G. Gola, D. Roverso, and M. Hoffmann, A procedure for the reconstruction of faulty signals by means of an ensemble of regression models based on principal components analysis, 2009.

P. P. Bonissone, F. Xue, and R. Subbu, Fast meta-models for local fusion of multiple predictive models, Applied Soft Computing, vol.11, issue.2, 2008.
DOI : 10.1016/j.asoc.2008.03.006

R. Bryll, R. Gutierrez-osuna, and F. Quek, Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets, Pattern Recognition, vol.36, issue.6, pp.1291-1302, 2003.
DOI : 10.1016/S0031-3203(02)00121-8

Y. Chenggang and S. Bingjing, Eliminating false alarms caused by fault propagation in signal validation by subgrouping , Progress in Nuclear Energy, pp.371-379, 2006.

R. Chevalier, D. Provost, and R. Seraoui, Assessment of statistical and classification models for monitoring EDF's assets, NPIC-HMIT, Topical Meeting, 2009.

K. I. Diamantaras and S. Y. Kung, Principal component neural networks: theory and applications, 1996.

P. F. Fantoni and A. Mazzola, Multiple-Failure Signal Validation in Nuclear Power Plants using Artificial Neural Networks, Nuclear technology, vol.113, issue.3, pp.368-374, 1996.

P. F. Fantoni, S. Figedy, and B. Papin, A NEURO-FUZZY MODEL APPLIED TO FULL RANGE SIGNAL VALIDATION OF PWR NUCLEAR POWER PLANT DATA, Second OECD Specialist Meeting on Operator Aids for Severe Accident Management (SAMOA-2), pp.8-10, 1997.
DOI : 10.1109/91.227387

P. F. Fantoni, M. Hoffmann, R. Shankar, and E. L. Davis, On-line monitoring of instrument channel performance in nuclear power plant using PEANO, Progress in Nuclear Energy, vol.43, issue.1-4, pp.83-89, 2003.
DOI : 10.1016/S0149-1970(03)00017-9

K. C. Gross and K. E. Kumenik, Sequential probability ratio test for nuclear power plant component surveillance, Nuclear Technology, vol.93, pp.131-137, 1991.

H. M. Hashemian, Sensor Performance and Reliability, 2004.

DOI : 10.1142/9789812774118_0135

K. E. Holbert and B. R. Upadhyaya, An Integrated Signal Validation for Nuclear Power Plants, Nuclear Technology, vol.92, issue.3, pp.411-427, 1990.

F. Johnson, Nuclear Reactor Controls and Instrumentation, 2008.

R. M. Kuridan and T. D. Beynon, A linearized non steady state model for the pressurizer of the safe integral reactor concept, Progress in Nuclear Energy, vol.33, issue.4, 1998.
DOI : 10.1016/S0149-1970(96)00021-2

B. Moore, Principal component analysis in linear systems: Controllability, observability, and model reduction, IEEE Transactions on Automatic Control, vol.26, issue.1, 1981.
DOI : 10.1109/TAC.1981.1102568

D. Roverso, M. Hoffmann, E. Zio, P. Baraldi, and G. Gola, Solutions for plant-wide on-line calibration monitoring, Proc. ESREL 2007, pp.827-832, 2007.

B. Scholkopf, A. Smola, and K. R. Muller, Kernel principal component analysis, Advances in Kernel Methods- Support Vector Learning, 1999.
DOI : 10.1007/BFb0020217

A. Wald, Sequential Analysis, 1947.

H. Y. Yang, S. H. Lee, and M. G. Na, Monitoring and Uncertainty Analysis of Feedwater Flow Rate Using Data-Based Modeling Methods, IEEE Transactions on Nuclear Science, vol.56, issue.4, pp.2426-2433, 2009.
DOI : 10.1109/TNS.2009.2022366

E. Zio, P. Baraldi, G. Gola, D. Roverso, and M. Hoffmann, Genetic Algoritms for Grouping of Signals for System Monitoring and Diagnostics, Proc. ESREL 2007, pp.833-840, 2007.