G. E. Apostolakis, The concept of probability in safety assessments of technological systems, Science, vol.250, issue.4986, p.1359, 1990.
DOI : 10.1126/science.2255906

C. Bassi and M. Marquès, Reliability assessment of 2400 MWth gas-cooled fast reactor natural circulation decay heat removal in pressurized situations. Science and Technology of Nuclear Installations, Special Issue Natural Circulation in Nuclear Reactor Systems, 2008.

W. G. Baxt and H. White, Bootstrapping Confidence Intervals for Clinical Input Variable Effects in a Network Trained to Identify the Presence of Acute Myocardial Infarction, Neural Computation, vol.4, issue.3, pp.624-638, 1995.
DOI : 10.1142/S0129065790000102

C. M. Bishop, Neural Networks for pattern recognition, 1995.

C. Bucher and T. Most, A comparison of approximate response functions in structural reliability analysis, Probabilistic Engineering Mechanics, vol.23, issue.2-3, pp.154-163, 2008.
DOI : 10.1016/j.probengmech.2007.12.022

L. Burgazzi, Reliability Evaluation of Passive Systems Through Functional Reliability Assessment, Nuclear Technology, vol.144, issue.2, p.145, 2003.
DOI : 10.13182/NT144-145

L. Burgazzi, State of the art in reliability of thermal-hydraulic passive systems, Reliability Engineering & System Safety, vol.92, issue.5, pp.671-675, 2007.
DOI : 10.1016/j.ress.2006.02.006

D. G. Cacuci and M. Ionescu-bujor, A Comparative Review of Sensitivity and Uncertainty Analysis of Large-Scale Systems - II: Statistical Methods, Nuclear Science and Engineering, vol.147, issue.3, pp.204-217, 2004.
DOI : 10.13182/04-54CR

F. Cadini, E. Zio, V. Kopustinskas, and R. Urbonas, A model based on bootstrapped neural networks for computing the maximum fuel cladding temperature in an Rmbk-1500 nuclear reactor accident, Nuclear Engineering and Design, vol.238, issue.9, pp.2165-2172, 2008.
DOI : 10.1016/j.nucengdes.2008.01.018

J. B. Cardoso, J. R. De-almeida, J. M. Dias, and P. G. Coelho, Structural reliability analysis using Monte Carlo simulation and neural networks Advances in Engineering Software, pp.505-513, 2008.

J. Cheng, Q. S. Li, and R. C. Xiao, A new artificial neural network-based response surface method for structural reliability analysis, Probabilistic Engineering Mechanics, vol.23, issue.1, pp.51-63, 2008.
DOI : 10.1016/j.probengmech.2007.10.003

G. Cybenko, Approximation by superposition of sigmoidal functions, Mathematics of Control, Signals and Systems, issue.2, pp.303-314, 1989.

J. Deng, Structural reliability analysis for implicit performance function using radial basis function network, International Journal of Solids and Structures, vol.43, issue.11-12, pp.3255-3291, 2006.
DOI : 10.1016/j.ijsolstr.2005.05.055

B. Efron and R. J. Thibshirani, An introduction to the bootstrap. Monographs on statistics and applied probability 57, 1993.

C. J. Fong and G. E. Apostolakis, The use of response surface methodology to perform uncertainty analyses on passive safety systems, Proceedings of PSA '08, International Topical Meeting on Probabilistic Safety Assessment, 2008.

H. P. Gavin and S. C. Yau, High-order limit state functions in the response surface method for structural reliability analysis, Structural Safety, vol.30, issue.2, pp.162-179, 2008.
DOI : 10.1016/j.strusafe.2006.10.003

S. Gazut, J. M. Martinez, G. Dreyfus, and Y. Oussar, Towards the Optimal Design of Numerical Experiments, IEEE Transactions on Neural Networks, vol.19, issue.5, pp.874-882, 2008.
DOI : 10.1109/TNN.2007.915111

J. C. Helton, Uncertainty and sensitivity analysis results obtained in the 1996 performance assessment for the waste isolation power plant, pp.98-0365, 1998.

J. Helton, Alternative representations of epistemic uncertainty, Reliability Engineering & System Safety, vol.85, issue.1-3, 2004.
DOI : 10.1016/j.ress.2004.03.001

J. C. Helton, J. J. Sallaberry, C. J. Storlie, and C. B. , Survey of sampling-based methods for uncertainty and sensitivity analysis, Reliability Engineering & System Safety, vol.91, issue.10-11, pp.91-1175, 2006.
DOI : 10.1016/j.ress.2005.11.017

J. E. Hurtado, Filtered importance sampling with support vector margin: A powerful method for structural reliability analysis, Structural Safety, vol.29, issue.1, pp.2-15, 2007.
DOI : 10.1016/j.strusafe.2005.12.002

J. Jafari, F. D-'auria, H. Kazeminejad, and H. Davilu, Reliability evaluation of a natural circulation system, Nuclear Engineering and Design, vol.224, issue.1, pp.79-104, 2003.
DOI : 10.1016/S0029-5493(03)00105-5

A. B. Liel, C. B. Haselton, G. G. Deierlein, and J. W. Baker, Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings, Structural Safety, vol.31, issue.2, pp.31-197, 2009.
DOI : 10.1016/j.strusafe.2008.06.002

F. J. Mackay, G. E. Apostolakis, and P. Hejzlar, Incorporating reliability analysis into the design of passive cooling systems with an application to a gas-cooled reactor, Nuclear Engineering and Design, vol.238, issue.1, pp.217-228, 2008.
DOI : 10.1016/j.nucengdes.2007.04.006

M. Marquès, J. F. Pignatel, P. Saignes, F. D-'auria, L. Burgazzi et al., Methodology for the reliability evaluation of a passive system and its integration into a Probabilistic Safety Assessment, Nuclear Engineering and Design, vol.235, issue.24, pp.2612-2631, 2005.
DOI : 10.1016/j.nucengdes.2005.06.008

A. Marrel, B. Iooss, B. Laurent, and O. Roustant, Calculations of Sobol indices for the Gaussian process metamodel, Reliability Engineering & System Safety, vol.94, issue.3, pp.94-742, 2009.
DOI : 10.1016/j.ress.2008.07.008

URL : https://hal.archives-ouvertes.fr/hal-00239494

T. S. Mathews, M. Ramakrishnan, U. Parthasarathy, J. Arul, A. Kumar et al., Functional reliability analysis of Safety Grade Decay Heat Removal System of Indian 500MWe PFBR, Nuclear Engineering and Design, vol.238, issue.9, pp.2369-2376, 2008.
DOI : 10.1016/j.nucengdes.2008.02.012

L. Pagani, G. E. Apostolakis, and P. Hejzlar, The Impact of Uncertainties on the Performance of Passive Systems, Nuclear Technology, vol.149, issue.2, pp.129-140, 2005.
DOI : 10.13182/NT149-129

G. Patalano, G. E. Apostolakis, and P. Hejzlar, Risk-informed design changes in a passive decay heat removal system, Nuclear Technology, vol.163, pp.191-208, 2008.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning internal representations by error back-propagation, Parallel distributed processing: exploration in the microstructure of cognition, 1986.

G. I. Schueller, On the treatment of uncertainties in structural mechanics and analysis. Computers and Structures, pp.235-243, 2007.

P. Secchi, E. Zio, D. Maio, and F. , Quantifying uncertainties in the estimation of safety parameters by using bootstrapped artificial neural networks, Annals of Nuclear Energy, vol.35, issue.12, pp.2338-2350, 2008.
DOI : 10.1016/j.anucene.2008.07.010

C. B. Storlie, L. P. Swiler, J. C. Helton, and C. J. Sallaberry, Implementation and evaluation of nonparameteric regression procedures for sensitivity analysis of computationally demanding models, 2008.

E. Volkova, B. Iooss, and F. Van-dorpe, Global sensitivity analysis for a numerical model of radionuclide migration from the RRC ???Kurchatov Institute??? radwaste disposal site, Stochastic Environmental Research and Risk Assessment, vol.16, issue.1, pp.17-31, 2008.
DOI : 10.1007/s00477-006-0093-y

J. Zhang and R. O. Foschi, Performance-based design and seismic reliability analysis using designed experiments and neural networks, Probabilistic Engineering Mechanics, vol.19, issue.3, pp.259-267, 2004.
DOI : 10.1016/j.probengmech.2004.02.009

E. Zio, A study of the bootstrap method for estimating the accuracy of artificial neural networks in predicting nuclear transient processes, IEEE Transactions on Nuclear Science, vol.53, issue.3, pp.1460-1470, 2006.
DOI : 10.1109/TNS.2006.871662

E. Zio and N. Pedroni, Estimation of the functional failure probability of a thermal???hydraulic passive system by Subset Simulation, Nuclear Engineering and Design, vol.239, issue.3, pp.580-599, 2009.
DOI : 10.1016/j.nucengdes.2008.11.005

E. Zio and N. Pedroni, Functional failure analysis of a thermal???hydraulic passive system by means of Line Sampling, Reliability Engineering & System Safety, vol.94, issue.11, pp.1764-1781, 2009.
DOI : 10.1016/j.ress.2009.05.010