M. Hoffmann, On-line Monitoring for Calibration Reduction Signal Grouping Algorithm for an Improved On-line Calibration Monitoring System Fuzzy Associative Memories for Instrument Fault Detection, Proceedings of FLINS Annals of Nuclear Energy, vol.23, issue.784 9, pp.739-756, 1996.

]. K. Holbert, A. S. Heger, A. M. Ishaque, X. Wang, and K. E. Holbert, Fuzzy Logic for Power Plant Signal Validation A Neural Network Realization of Linear Least-Square Estimate for Sensor Validation Neural Networks for Signal Validation in Nuclear Power Plants, Proceedings of the Ninth Power Plant Dynamics, Control & Testing Symposium Proceedings of the Ninth Power Plant Dynamics, Control & Testing Symposium Electric Power Research for the 90's, Proceedings of the Second Annual Industrial Partnership Program Conference. [7] K. E. Holbert, B. R. Upadhyaya, An Integrated Signal Validation for Nuclear Power Plants, pp.20-21, 1990.

P. F. Fantoni, M. I. Hoffmann, R. Shankar, and E. L. Davis, On-line Monitoring of Instrument Channel Performance in Nuclear Power Plant using PEANO, Progress in Nuclear Energy, pp.83-89, 2003.

P. F. Fantoni and A. Mazzola, Multiple-Failure Signal Validation in Nuclear Power Plants using Artificial Neural Networks, Nuclear technology, vol.113, issue.3, pp.368-374, 1996.

D. Roverso, M. Hoffmann, E. Zio, P. Baraldi, and G. Gola, Solutions for plant-wide on-line calibration monitoring, Proc. ESREL 2007, pp.827-832, 2007.

E. Zio, P. Baraldi, G. Gola, D. Roverso, and M. Hoffmann, Genetic Algoritms for Grouping of Signals for System Monitoring and Diagnostics, Proc. ESREL 2007, pp.833-840, 2007.

P. Baraldi, E. Zio, G. Gola, D. Roverso, and M. Hoffmann, Genetic algorithms for signal grouping in sensor validation: a comparison of the filter and wrapper approaches, Proc. IMechE, pp.189-206, 2008.
DOI : 10.1243/1748006XJRR137

M. P. Perrone and C. L. , When networks disagree: Ensemble methods for hybrid neural networks, Neural Networks for Speech and Image Processing, 1993.
DOI : 10.1142/9789812795885_0025

A. Krogh and J. Vedelsby, Neural network ensembles, cross-validation and active learning Advances in newel information processing systems, pp.231-238, 1995.

A. J. Sharkey, On Combining Artificial Neural Nets, Connection Science, vol.8, issue.3-4, pp.299-314, 1996.
DOI : 10.1080/095400996116785

G. Gola, E. Zio, P. Baraldi, D. Roverso, and M. Hoffmann, Signal Grouping for Sensor Validation: a Multi-Objective Genetic Algorithm Approach, 2007.

DOI : 10.1142/9789812799470_0153

G. Gola, E. Zio, P. Baraldi, D. Roverso, and M. Hoffmann, Reconstructing signals for sensor validation by a GAoptimized ensemble of PCA models, HWR-894, 2008.

N. Rooney, D. Patterson, S. Anand, and A. , Dynamic Integration of Regression Models, 2204, Lecture notes in computer science, MCS 2004: Multiple Classifier Systems, 5 th International workshop, pp.164-173

G. Ratsch, A. Demiriz, and K. P. Bennett, Sparse Regression Ensembles in Infinite and Finite Hypothesis Spaces, Machine Learning, pp.189-218, 2002.

G. Brown, J. L. Wyatt, and P. Tino, Managing Diversity in Regression Ensembles, Journal of Machine Learning Research, vol.6, pp.1621-1650, 2005.

L. Breiman, Bagging predictors, Machine Learning, pp.123-140, 1996.
DOI : 10.1007/BF00058655

R. Polikar, Ensemble based systems in decision making, IEEE Circuits and Systems Magazine, vol.6, issue.3, pp.21-45, 2006.
DOI : 10.1109/MCAS.2006.1688199

A. Tsymbal, S. Puuronen, and I. Skrypnyk, Ensemble feature selection with dynamic integration of classifiers, Int. ICSC Congress on Computational Intelligence Methods and Applications CIMA, pp.558-564, 2001.

A. Tsymbal, M. Pechenizkiy, and P. Cunningham, Diversity in search strategies for ensemble feature selection, Information Fusion, vol.6, issue.1, pp.83-98, 2005.
DOI : 10.1016/j.inffus.2004.04.003

R. Bryll, R. Gutierrez-osuna, and F. Quek, Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets, Pattern Recognition, vol.36, issue.6, pp.1291-1302, 2003.
DOI : 10.1016/S0031-3203(02)00121-8

I. T. Jolliffe, Principal Component Analysis, 2002.
DOI : 10.1007/978-1-4757-1904-8

K. I. Diamantaras and S. Y. Kung, Principal component neural networks: theory and applications, 1996.

B. Scholkopf, A. Smola, and K. R. Muller, Kernel principal component analysis, Advances in Kernel Methods- Support Vector Learning, 1999.
DOI : 10.1007/BFb0020217

B. Moore, Principal component analysis in linear systems: Controllability, observability, and model reduction, IEEE Transactions on Automatic Control, vol.26, issue.1, 1981.
DOI : 10.1109/TAC.1981.1102568

P. P. Bonissone, F. Xue, and R. Subbu, Fast meta-models for local fusion of multiple predictive models, Applied Soft Computing, vol.11, issue.2, 2009.
DOI : 10.1016/j.asoc.2008.03.006

L. I. Kuncheva, Classifier Ensembles for Changing Environments, Multiple Classifier Systems Lecture Notes on Computer Science, vol.3077, 2004.
DOI : 10.1007/978-3-540-25966-4_1

J. Kittler, M. Hatef, R. P. Duin, and J. Matas, On combining classifiers, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.20, issue.3, pp.226-239, 1998.
DOI : 10.1109/34.667881

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with application to biology, Control and Artificial Intelligence, 1975.

D. E. Goldberg, Genetic algorithms in search, optimization, and machine learning, 1989.

L. Chambers, Practical handbook of genetic algorithms: applications Vol. I; new frontiers, 1995.

Y. Sawaragy, H. Nakayama, and T. Tanino, Theory of multiobjective optimization, 1985.

M. Marseguerra, Lecture notes on Principal Components Analysis (PCA), Polytechnic of Milan

. Appendix, Principal Component Analysis (PCA) for signal validation and reconstruction